J. M. Pauls, J. C. Murphy, M. Drake, A. S. Rogachev, A. S. Mukasyan
{"title":"Cryo-Milled Nickel–Aluminum Nanostructured Composites: Bifurcated Ignition Mode","authors":"J. M. Pauls, J. C. Murphy, M. Drake, A. S. Rogachev, A. S. Mukasyan","doi":"10.3103/S1061386222040070","DOIUrl":null,"url":null,"abstract":"<p>We report the use of high-energy cryo-milling for fabrication of reactive composite Ni/Al particles. Specifically, the CryoMill (Retsch) with liquid nitrogen was used with milling times in the range of 5 to 40 min. The microstructure of the obtained particles and their ignition characteristics were investigated. A novel bifurcated ignition mode for intermediate milling times was observed. The correlations between the microstructure of the Ni/Al particles and their reactivity were discussed.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 4","pages":"236 - 246"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386222040070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report the use of high-energy cryo-milling for fabrication of reactive composite Ni/Al particles. Specifically, the CryoMill (Retsch) with liquid nitrogen was used with milling times in the range of 5 to 40 min. The microstructure of the obtained particles and their ignition characteristics were investigated. A novel bifurcated ignition mode for intermediate milling times was observed. The correlations between the microstructure of the Ni/Al particles and their reactivity were discussed.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.