{"title":"Lung segmentation method with dilated convolution based on VGG-16 network","authors":"Lei Geng, Siqi Zhang, Jun Tong, Zhitao Xiao","doi":"10.1080/24699322.2019.1649071","DOIUrl":null,"url":null,"abstract":"Abstract Lung cancer has become one of the life-threatening killers. Lung disease need to be assisted by CT images taken doctor's diagnosis, and the segmented CT image of the lung parenchyma is the first step to help doctor diagnosis. For the problem of accurately segmenting the lung parenchyma, this paper proposes a segmentation method based on the combination of VGG-16 and dilated convolution. First of all, we use the first three parts of VGG-16 network structure to convolution and pooling the input image. Secondly, using multiple sets of dilated convolutions make the network has a large enough receptive field. Finally, the multi-scale convolution features are fused, and each pixel is predicted using MLP to segment the parenchymal region. Experimental results were produced over state of the art on 137 images which key metrics Dice similarity coefficient (DSC) is 0.9867. Experimental results show that this method can effectively segment the lung parenchymal area, and compared to other conventional methods better.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"24 1","pages":"27 - 33"},"PeriodicalIF":1.5000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2019.1649071","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2019.1649071","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 50
Abstract
Abstract Lung cancer has become one of the life-threatening killers. Lung disease need to be assisted by CT images taken doctor's diagnosis, and the segmented CT image of the lung parenchyma is the first step to help doctor diagnosis. For the problem of accurately segmenting the lung parenchyma, this paper proposes a segmentation method based on the combination of VGG-16 and dilated convolution. First of all, we use the first three parts of VGG-16 network structure to convolution and pooling the input image. Secondly, using multiple sets of dilated convolutions make the network has a large enough receptive field. Finally, the multi-scale convolution features are fused, and each pixel is predicted using MLP to segment the parenchymal region. Experimental results were produced over state of the art on 137 images which key metrics Dice similarity coefficient (DSC) is 0.9867. Experimental results show that this method can effectively segment the lung parenchymal area, and compared to other conventional methods better.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.