Systematic underestimation of uncertainties by widespread neutron-scattering data-reduction software

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-04-20 DOI:10.3233/jnr-220049
S. Heybrock, J. Wynen, N. Vaytet
{"title":"Systematic underestimation of uncertainties by widespread neutron-scattering data-reduction software","authors":"S. Heybrock, J. Wynen, N. Vaytet","doi":"10.3233/jnr-220049","DOIUrl":null,"url":null,"abstract":"Data-reduction software used at neutron-scattering facilities around the world, Mantid and Scipp, ignore correlations when propagating uncertainties in arithmetic operations. Normalization terms applied during data-reduction frequently have a lower dimensionality than the quantities being normalized. We show how the lower dimensionality introduces correlations, which the software does not take into account in subsequent data-reduction steps such as histogramming, summation, or fitting. As a consequence, any uncertainties in the normalization terms are strongly suppressed and thus effectively ignored. This can lead to erroneous attribution of significance to deviations that are actually pure noise, or to overestimation of significance in final data-reduction results that are used for further data analysis. We analyze this flaw for a number of different cases as they occur in practice. For the two concrete experiments that are comprised in these case studies the underestimation turns out to be of negligible size. There is however no reason to assume that this generalizes to other measurements at the same or at different neutron-scattering beamlines. We describe and implement a potential solution that yields not only corrected error estimates but also the full variance-covariance matrix of the reduced result with minor additional computational cost.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Data-reduction software used at neutron-scattering facilities around the world, Mantid and Scipp, ignore correlations when propagating uncertainties in arithmetic operations. Normalization terms applied during data-reduction frequently have a lower dimensionality than the quantities being normalized. We show how the lower dimensionality introduces correlations, which the software does not take into account in subsequent data-reduction steps such as histogramming, summation, or fitting. As a consequence, any uncertainties in the normalization terms are strongly suppressed and thus effectively ignored. This can lead to erroneous attribution of significance to deviations that are actually pure noise, or to overestimation of significance in final data-reduction results that are used for further data analysis. We analyze this flaw for a number of different cases as they occur in practice. For the two concrete experiments that are comprised in these case studies the underestimation turns out to be of negligible size. There is however no reason to assume that this generalizes to other measurements at the same or at different neutron-scattering beamlines. We describe and implement a potential solution that yields not only corrected error estimates but also the full variance-covariance matrix of the reduced result with minor additional computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广泛的中子散射数据简化软件对不确定度的系统低估
世界各地中子散射设施使用的数据简化软件Mantid和Scipp在算术运算中传播不确定性时忽略了相关性。在数据约简期间应用的归一化项通常具有比被归一化的量更低的维度。我们展示了较低的维度如何引入相关性,软件在随后的数据缩减步骤(如直方图、求和或拟合)中没有考虑到相关性。因此,归一化项中的任何不确定性都被强烈抑制,从而有效地忽略。这可能导致错误地将显著性归因于实际上是纯粹噪声的偏差,或者在用于进一步数据分析的最终数据缩减结果中高估显著性。我们针对实践中出现的一些不同情况分析了这个缺陷。对于这些案例研究中包含的两个具体实验,低估的大小可以忽略不计。然而,没有理由认为这可以推广到相同或不同中子散射光束线的其他测量。我们描述并实现了一种潜在的解决方案,该解决方案不仅可以产生修正的误差估计,还可以产生减少结果的完整方差-协方差矩阵,并且具有较小的额外计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Psychosexual dysfunction in male patients with cannabis dependence and synthetic cannabinoid dependence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1