Evaluation of Diagnostic Performance of Machine Learning Algorithms to Classify the Fetal Heart Rate Baseline from Cardiotocograph

Pub Date : 2022-07-01 DOI:10.4018/ijban.292060
Sahana Das
{"title":"Evaluation of Diagnostic Performance of Machine Learning Algorithms to Classify the Fetal Heart Rate Baseline from Cardiotocograph","authors":"Sahana Das","doi":"10.4018/ijban.292060","DOIUrl":null,"url":null,"abstract":"Cardiotocography (CTG) is the widely used cost-effective, non-invasive technique to monitor the fetal heart and mother’s uterine contraction pressure to assess the wellbeing of the fetus. The most important parameters of fetal heart is the baseline upon which the other parameters viz. acceleration, deceleration and variability depend. Accurate classification of the baseline into either normal, bradycardia or tachycardia is thus important to assess the fetal-health. Since visual estimation has its limitations, the authors use various Machine Learning Algorithms to classify the baseline. 110 CTG traces from CTU-UHB dataset, were divided into three subsets using stratified sampling to ensure that the sample is the accurate depiction of the population. The results were analyzed using various statistical methods and compared with the visual estimation by three obstetricians. FURIA provided greatest accuracy of 98.11%. From the analysis of Bland-Altman Plot FURIA was also found to have best agreement with physicians’ estimation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.292060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cardiotocography (CTG) is the widely used cost-effective, non-invasive technique to monitor the fetal heart and mother’s uterine contraction pressure to assess the wellbeing of the fetus. The most important parameters of fetal heart is the baseline upon which the other parameters viz. acceleration, deceleration and variability depend. Accurate classification of the baseline into either normal, bradycardia or tachycardia is thus important to assess the fetal-health. Since visual estimation has its limitations, the authors use various Machine Learning Algorithms to classify the baseline. 110 CTG traces from CTU-UHB dataset, were divided into three subsets using stratified sampling to ensure that the sample is the accurate depiction of the population. The results were analyzed using various statistical methods and compared with the visual estimation by three obstetricians. FURIA provided greatest accuracy of 98.11%. From the analysis of Bland-Altman Plot FURIA was also found to have best agreement with physicians’ estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
机器学习算法对胎儿心率基线进行分类的诊断性能评估
心脏造影(CTG)是一种广泛使用的低成本、无创技术,用于监测胎儿心脏和母亲子宫收缩压力,以评估胎儿的健康状况。胎儿心脏最重要的参数是基线,其他参数如加速、减速和变异性依赖于基线。因此,将基线准确分类为正常、心动过缓或心动过速对评估胎儿健康非常重要。由于视觉估计有其局限性,作者使用各种机器学习算法对基线进行分类。来自CTU-UHB数据集的110个CTG痕迹,使用分层抽样将其分为三个子集,以确保样本是对总体的准确描述。采用各种统计方法对结果进行分析,并与三位产科医生的目测结果进行比较。FURIA的准确度最高,为98.11%。从Bland-Altman Plot的分析中也发现FURIA与医生的估计最一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1