A. Najafinezhad, H. R. Bakhsheshi‐Rad, A. Saberi, A. Nourbakhsh, M. Daroonparvar, A. Ismail, S. Sharif, S. Ramakrishna, Yunqian Dai, F. Berto
{"title":"Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior","authors":"A. Najafinezhad, H. R. Bakhsheshi‐Rad, A. Saberi, A. Nourbakhsh, M. Daroonparvar, A. Ismail, S. Sharif, S. Ramakrishna, Yunqian Dai, F. Berto","doi":"10.1088/1748-605X/ac62e8","DOIUrl":null,"url":null,"abstract":"It is very desirable to have good antibacterial properties and mechanical properties at the same time for bone scaffolds. Graphene oxide (GO) can increase the mechanical properties and antibacterial performance, while forsterite (Mg2SiO4) as the matrix can increase forsterite/GO scaffolds’ biological activity for bone tissue engineering. Interconnected porous forsterite scaffolds were developed by space holder processes for bone tissue engineering in this research. The forsterite/GO scaffolds had a porosity of 76%–78% with pore size of 300–450 μm. The mechanism of the mechanical strengthening, antibacterial activity, and cellular function of the forsterite/GO scaffold was evaluated. The findings show that the compressive strength of forsterite/1 wt.% GO scaffold (2.4 ± 0.1 MPa) was significantly increased, in comparison to forsterite scaffolds without GO (1.4 ± 0.1 MPa). Validation of the samples’ bioactivity was attained by forming a hydroxyapatite layer on the forsterite/GO surface within in vitro immersion test. The results of cell viability demonstrated that synthesized forsterite scaffolds with low GO did not show cytotoxicity and enhanced cell proliferation. Antibacterial tests showed that the antibacterial influence of forsterite/GO scaffold was strongly correlated with GO concentration from 0.5 to 2 wt.%. The scaffold encapsulated with 2 wt.% GO had the great antibacterial performance with bacterial inhibition rate around 90%. As results show, the produced forsterite/1 wt.% GO can be an attractive option for bone tissue engineering.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac62e8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3
Abstract
It is very desirable to have good antibacterial properties and mechanical properties at the same time for bone scaffolds. Graphene oxide (GO) can increase the mechanical properties and antibacterial performance, while forsterite (Mg2SiO4) as the matrix can increase forsterite/GO scaffolds’ biological activity for bone tissue engineering. Interconnected porous forsterite scaffolds were developed by space holder processes for bone tissue engineering in this research. The forsterite/GO scaffolds had a porosity of 76%–78% with pore size of 300–450 μm. The mechanism of the mechanical strengthening, antibacterial activity, and cellular function of the forsterite/GO scaffold was evaluated. The findings show that the compressive strength of forsterite/1 wt.% GO scaffold (2.4 ± 0.1 MPa) was significantly increased, in comparison to forsterite scaffolds without GO (1.4 ± 0.1 MPa). Validation of the samples’ bioactivity was attained by forming a hydroxyapatite layer on the forsterite/GO surface within in vitro immersion test. The results of cell viability demonstrated that synthesized forsterite scaffolds with low GO did not show cytotoxicity and enhanced cell proliferation. Antibacterial tests showed that the antibacterial influence of forsterite/GO scaffold was strongly correlated with GO concentration from 0.5 to 2 wt.%. The scaffold encapsulated with 2 wt.% GO had the great antibacterial performance with bacterial inhibition rate around 90%. As results show, the produced forsterite/1 wt.% GO can be an attractive option for bone tissue engineering.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters