A scenario-integrated approach for functional design of smart systems

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing Pub Date : 2021-01-05 DOI:10.1017/S0890060420000487
Fajun Gui, Yong Chen
{"title":"A scenario-integrated approach for functional design of smart systems","authors":"Fajun Gui, Yong Chen","doi":"10.1017/S0890060420000487","DOIUrl":null,"url":null,"abstract":"Abstract Functional design is regarded as a design activity primarily aimed at clarifying customer needs, and developing the functional architecture and solution concepts for a system under development. Existing functional design approaches are mainly focused on how to assist designers in searching for solution principles for desired products, which, however, do not adequately take into account the interactions between a smart system under development and its environment, and cannot explicitly represent the complex functional logic of the system, resulting in that they cannot effectively assist designers in the functional design of smart systems. Therefore, this paper proposes a scenario-integrated approach for functional design of smart systems to address the above issues. Based on the concept of scenario in software engineering, the proposed approach explicitly elaborates how to employ scenarios to express subjective customer needs and how to generate the functional architectures and the corresponding solution concepts through a structured process. The functional design of the automated doors-unlocking system of a smart vehicle is employed to illustrate the proposed approach, which also demonstrates that the proposed approach is suitable for functional design of smart systems.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"35 1","pages":"165 - 179"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0890060420000487","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060420000487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Functional design is regarded as a design activity primarily aimed at clarifying customer needs, and developing the functional architecture and solution concepts for a system under development. Existing functional design approaches are mainly focused on how to assist designers in searching for solution principles for desired products, which, however, do not adequately take into account the interactions between a smart system under development and its environment, and cannot explicitly represent the complex functional logic of the system, resulting in that they cannot effectively assist designers in the functional design of smart systems. Therefore, this paper proposes a scenario-integrated approach for functional design of smart systems to address the above issues. Based on the concept of scenario in software engineering, the proposed approach explicitly elaborates how to employ scenarios to express subjective customer needs and how to generate the functional architectures and the corresponding solution concepts through a structured process. The functional design of the automated doors-unlocking system of a smart vehicle is employed to illustrate the proposed approach, which also demonstrates that the proposed approach is suitable for functional design of smart systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能系统功能设计的场景集成方法
摘要功能设计被认为是一种设计活动,主要目的是澄清客户需求,并为正在开发的系统开发功能架构和解决方案概念。现有的功能设计方法主要集中在如何帮助设计者为所需产品寻找解决方案原则上,然而,这些方法没有充分考虑正在开发的智能系统与其环境之间的交互,也不能明确地表示系统的复杂功能逻辑,导致它们不能有效地帮助设计者进行智能系统的功能设计。因此,本文提出了一种智能系统功能设计的场景集成方法来解决上述问题。基于软件工程中的场景概念,该方法明确阐述了如何使用场景来表达客户的主观需求,以及如何通过结构化过程生成功能架构和相应的解决方案概念。以智能汽车车门自动解锁系统的功能设计为例,说明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
期刊最新文献
Does empathy lead to creativity? A simulation-based investigation on the role of team trait empathy on nominal group concept generation and early concept screening A knowledge-enabled approach for user experience-driven product improvement at the conceptual design stage Free-text inspiration search for systematic bio-inspiration support of engineering design Tool life prediction via SMB-enabled monitor based on BPNN coupling algorithms for sustainable manufacturing A comparative review on the role of stimuli in idea generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1