{"title":"A scenario-integrated approach for functional design of smart systems","authors":"Fajun Gui, Yong Chen","doi":"10.1017/S0890060420000487","DOIUrl":null,"url":null,"abstract":"Abstract Functional design is regarded as a design activity primarily aimed at clarifying customer needs, and developing the functional architecture and solution concepts for a system under development. Existing functional design approaches are mainly focused on how to assist designers in searching for solution principles for desired products, which, however, do not adequately take into account the interactions between a smart system under development and its environment, and cannot explicitly represent the complex functional logic of the system, resulting in that they cannot effectively assist designers in the functional design of smart systems. Therefore, this paper proposes a scenario-integrated approach for functional design of smart systems to address the above issues. Based on the concept of scenario in software engineering, the proposed approach explicitly elaborates how to employ scenarios to express subjective customer needs and how to generate the functional architectures and the corresponding solution concepts through a structured process. The functional design of the automated doors-unlocking system of a smart vehicle is employed to illustrate the proposed approach, which also demonstrates that the proposed approach is suitable for functional design of smart systems.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"35 1","pages":"165 - 179"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0890060420000487","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060420000487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Functional design is regarded as a design activity primarily aimed at clarifying customer needs, and developing the functional architecture and solution concepts for a system under development. Existing functional design approaches are mainly focused on how to assist designers in searching for solution principles for desired products, which, however, do not adequately take into account the interactions between a smart system under development and its environment, and cannot explicitly represent the complex functional logic of the system, resulting in that they cannot effectively assist designers in the functional design of smart systems. Therefore, this paper proposes a scenario-integrated approach for functional design of smart systems to address the above issues. Based on the concept of scenario in software engineering, the proposed approach explicitly elaborates how to employ scenarios to express subjective customer needs and how to generate the functional architectures and the corresponding solution concepts through a structured process. The functional design of the automated doors-unlocking system of a smart vehicle is employed to illustrate the proposed approach, which also demonstrates that the proposed approach is suitable for functional design of smart systems.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.