J. Gose, Kevin Golovin, Mathew Boban, Brian Tobelmann, E. Callison, J. Barros, M. Schultz, A. Tuteja, M. Perlin, S. Ceccio
{"title":"Turbulent Skin Friction Reduction through the Application of Superhydrophobic Coatings to a Towed Submerged SUBOFF Body","authors":"J. Gose, Kevin Golovin, Mathew Boban, Brian Tobelmann, E. Callison, J. Barros, M. Schultz, A. Tuteja, M. Perlin, S. Ceccio","doi":"10.5957/JOSR.10190060","DOIUrl":null,"url":null,"abstract":"In the present study, the drag-reducing effect of sprayed superhydrophobic surfaces (SHSs) is determined for two external turbulent boundary layer (TBL) flows. We infer the modification of skin friction created beneath TBLs using near-wall laser Doppler velocity measurements for a series of tailored SHSs. Measurements of the near-wall Reynolds stresses were used to infer reduction in skin friction between 8% and 36% in the channel flow. The best candidate SHS was then selected for application on a towed submersible body with a SUBOFF profile. The SHS was applied to roughly 60% of the model surface over the parallel midbody of the model. The measurements of the towed resistance showed an average decrease in the overall resistance from 2% to 12% depending on the speed and depth of the towed model, which suggests a SHS friction drag reduction of 4-24% with the application of the SHS on the model. The towed model results are consistent with the expected drag reduction inferred from the measurements of a near-zero pressure gradient TBL channel flow.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JOSR.10190060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4
Abstract
In the present study, the drag-reducing effect of sprayed superhydrophobic surfaces (SHSs) is determined for two external turbulent boundary layer (TBL) flows. We infer the modification of skin friction created beneath TBLs using near-wall laser Doppler velocity measurements for a series of tailored SHSs. Measurements of the near-wall Reynolds stresses were used to infer reduction in skin friction between 8% and 36% in the channel flow. The best candidate SHS was then selected for application on a towed submersible body with a SUBOFF profile. The SHS was applied to roughly 60% of the model surface over the parallel midbody of the model. The measurements of the towed resistance showed an average decrease in the overall resistance from 2% to 12% depending on the speed and depth of the towed model, which suggests a SHS friction drag reduction of 4-24% with the application of the SHS on the model. The towed model results are consistent with the expected drag reduction inferred from the measurements of a near-zero pressure gradient TBL channel flow.
期刊介绍:
Original and Timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such, it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economic, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.