Stabilization and optimization of purified diamine oxidase by immobilization onto activated PVC membrane

IF 1.8 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food Biotechnology Pub Date : 2020-10-01 DOI:10.1080/08905436.2020.1833912
N. Verma, R. Saini, A. Gahlaut, V. Hooda
{"title":"Stabilization and optimization of purified diamine oxidase by immobilization onto activated PVC membrane","authors":"N. Verma, R. Saini, A. Gahlaut, V. Hooda","doi":"10.1080/08905436.2020.1833912","DOIUrl":null,"url":null,"abstract":"ABSTRACT The covalent immobilization of enzymes is required for most biocatalytic processes as it can broaden their applicability in various workflows. Diamine oxidase (DAO) has found important utility in food and allied industries for protection of food freshness and safety. In this study, an activated PVC strip was developed, covalently immobilized to purified DAO from pea seedlings. A comparative investigation was done on the parameters affecting catalytic activity of the free and immobilized enzyme, such as pH, temperature, and enzyme concentration. The immobilization preserved 81% of the initial enzyme activity against the substrate, putrescine dihydrochloride. The optimal pH levels of free and immobilized DAO were 7.0 and 6.5, respectively. The highest activity of the immobilized DAO was observed at 40°C while 34°C for the free enzyme. Moreover, the immobilized DAO retained about 52% of its initial activity after 10 repetitive uses and the activity was maintained after 30 days at 4°C. Therefore, this strategy may provide an excellent support for enzyme immobilization having better catalytic ability and operational stability than its free counterpart. Eventually, the results observed can be used further for various applications such as in food industry, to evaluate the freshness of real samples, and in biotechnological field to fabricate specific biosensors to detect biogenic amines content for evaluating food hygienic quality. Thus, the prepared enzyme catalyst presents a new approach for successful industrial applications.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"34 1","pages":"306 - 322"},"PeriodicalIF":1.8000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08905436.2020.1833912","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2020.1833912","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT The covalent immobilization of enzymes is required for most biocatalytic processes as it can broaden their applicability in various workflows. Diamine oxidase (DAO) has found important utility in food and allied industries for protection of food freshness and safety. In this study, an activated PVC strip was developed, covalently immobilized to purified DAO from pea seedlings. A comparative investigation was done on the parameters affecting catalytic activity of the free and immobilized enzyme, such as pH, temperature, and enzyme concentration. The immobilization preserved 81% of the initial enzyme activity against the substrate, putrescine dihydrochloride. The optimal pH levels of free and immobilized DAO were 7.0 and 6.5, respectively. The highest activity of the immobilized DAO was observed at 40°C while 34°C for the free enzyme. Moreover, the immobilized DAO retained about 52% of its initial activity after 10 repetitive uses and the activity was maintained after 30 days at 4°C. Therefore, this strategy may provide an excellent support for enzyme immobilization having better catalytic ability and operational stability than its free counterpart. Eventually, the results observed can be used further for various applications such as in food industry, to evaluate the freshness of real samples, and in biotechnological field to fabricate specific biosensors to detect biogenic amines content for evaluating food hygienic quality. Thus, the prepared enzyme catalyst presents a new approach for successful industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活性PVC膜固定化纯化二胺氧化酶的稳定性及优化
摘要酶的共价固定化是大多数生物催化过程所必需的,因为它可以拓宽酶在各种工作流程中的适用性。二胺氧化酶(DAO)在食品及相关行业中具有重要的用途,可保护食品的新鲜度和安全性。本研究开发了一种活性PVC条,将其共价固定在豌豆幼苗中纯化的DAO上。对影响游离酶和固定化酶催化活性的参数,如pH、温度和酶浓度进行了比较研究。固定化对底物腐胺二盐酸盐保留了81%的初始酶活性。游离和固定化DAO的最适pH值分别为7.0和6.5。固定化DAO的最高活性在40°C时观察到,而游离酶的最高活性为34°C。此外,固定化的DAO在10次重复使用后保留了约52%的初始活性,并且在4°C下保持了30天后的活性。因此,该策略可以为酶固定化提供极好的支持,其具有比游离对应物更好的催化能力和操作稳定性。最终,观察到的结果可以进一步用于各种应用,如在食品工业中,评估真实样品的新鲜度,以及在生物技术领域制造特定的生物传感器,以检测生物胺含量,从而评估食品卫生质量。因此,所制备的酶催化剂为成功的工业应用提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Biotechnology
Food Biotechnology 工程技术-生物工程与应用微生物
CiteScore
3.80
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production. Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published. Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.
期刊最新文献
A Novel β-Galactosidase from Kluyvera intermedia and its Potential for Hydrolyzing Lactose in Milk Characterization of Probiotic Potential Lactic Acid Bacteria Isolated from Chinese Cabbage Brassica rapa subsp. Pekinensis Comprehensive in vitro and in silico Evaluation of Safety and Probiotic Potential of Lactiplantibacillus plantarum strain LFN10 Differentiation of Saccharomyces boulardii from Saccharomyces cerevisiae Strains Using the qPCR-HRM Technique Targeting AAD15 Gene Limosilactobacillus fermentum MYSY8, a Potential Probiotic Isolate from Fermented Rice Beverage for the Control of Microsporum canis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1