On the Bayesian Sequential Change-Point Detection

IF 0.1 Q4 STATISTICS & PROBABILITY JIRSS-Journal of the Iranian Statistical Society Pub Date : 2017-06-25 DOI:10.18869/ACADPUB.JIRSS/20170601
Gholamhossein Gholami
{"title":"On the Bayesian Sequential Change-Point Detection","authors":"Gholamhossein Gholami","doi":"10.18869/ACADPUB.JIRSS/20170601","DOIUrl":null,"url":null,"abstract":". The problems of sequential change-point have several important appli-cations, including quality control, failure detection in industrial, finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time (cid:28) , the process behavior changes and the distribution of the data changes from p 0 to p 1 . Two cases are considered: (i) p 0 and p 1 are fully known, (ii) p 0 and p 1 belong to the same family of distributions with some unknown parameters (cid:18) 1 , (cid:18) 2 . We present a maximum a posteriori estimate of the change-point which, for the case (i) can be computed in a sequential manner. In addition, we propose the use of the Shiryaev’s loss function. Under this assumption, we define a Bayesian stopping rule. For the Poisson distribution and in the two cases (i) and (ii), we obtain results for the conjugate prior.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"16 1","pages":"77-94"},"PeriodicalIF":0.1000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.JIRSS/20170601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

. The problems of sequential change-point have several important appli-cations, including quality control, failure detection in industrial, finance and signal detection. We discuss a Bayesian approach in the context of statistical process control: at an unknown time (cid:28) , the process behavior changes and the distribution of the data changes from p 0 to p 1 . Two cases are considered: (i) p 0 and p 1 are fully known, (ii) p 0 and p 1 belong to the same family of distributions with some unknown parameters (cid:18) 1 , (cid:18) 2 . We present a maximum a posteriori estimate of the change-point which, for the case (i) can be computed in a sequential manner. In addition, we propose the use of the Shiryaev’s loss function. Under this assumption, we define a Bayesian stopping rule. For the Poisson distribution and in the two cases (i) and (ii), we obtain results for the conjugate prior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于贝叶斯序列变化点检测
.顺序变化点的问题有几个重要的应用,包括质量控制、工业中的故障检测、金融和信号检测。我们在统计过程控制的背景下讨论了贝叶斯方法:在未知时间(cid:28),过程行为发生变化,数据分布从p0变化到p1。考虑了两种情况:(i)p0和p1是完全已知的,(ii)p0与p1属于具有一些未知参数的分布族(cid:18)1,(cid:18)2。我们提出了变化点的最大后验估计,对于情况(i),该估计可以以顺序方式计算。此外,我们还建议使用Shiryaev损失函数。在此假设下,我们定义了一个贝叶斯停止规则。对于泊松分布,在(i)和(ii)这两种情况下,我们获得了共轭先验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Random Projection-Based Anderson-Darling Test for Random Fields Time Series Modeling of Coronavirus (COVID-19) Spread in Iran A Comparative Study of Some Clustering Algorithms on Shape Data A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution Preservation of Stochastic Orderings of Interdependent Series and Parallel Systems by Componentwise Switching to Exponentiated Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1