3D printing process for continuous fibre reinforced composites with variable deposition direction

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL Advances in Mechanical Engineering Pub Date : 2023-08-01 DOI:10.1177/16878132231190341
Shuangfei Min, Yuegang Tan, Fan Zhang, Yiwen Tu
{"title":"3D printing process for continuous fibre reinforced composites with variable deposition direction","authors":"Shuangfei Min, Yuegang Tan, Fan Zhang, Yiwen Tu","doi":"10.1177/16878132231190341","DOIUrl":null,"url":null,"abstract":"Continuous fibre reinforced polymer (CFRP) have a distinctive anisotropic character. In traditional 3D printing processes, deposition direction cannot be adjusted. As a result, the performance of CFRP parts is deficient in the fixed direction. To address the issue, this paper proposes a variable deposition direction (VDD) 3D printing process for CFRP. The process optimises the mechanical properties of the moulded part by adjusting the direction of deposition. The principles and processes of the VDD 3D printing are described in detail. Then, using the hollow cylinder as an example, a mathematical model of the variable deposition direction structure is developed, and subsequent simulations is conducted to evaluate its mechanical properties. In the experimental part, the composite material used has a fibre content of 20% and consists of PETG and carbon fibres. The VDD hollow cylindrical parts have been printed to verify the feasibility of the process. And performance testing experiments were carried out on a variety of test specimens of different structures with VDD. The results show that adjusting the deposition direction of the CFRP can greatly improve the tensile properties of hollow cylinder. The tensile properties of a suitable structure with VDD were improved by a factor of 69.4 compared to a single deposition direction structure. And the actual tensile situation is consistent with the simulation. To summarise, the proposed method can effectively solve the defects of the traditional process and optimise the mechanical properties of the moulded parts.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231190341","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous fibre reinforced polymer (CFRP) have a distinctive anisotropic character. In traditional 3D printing processes, deposition direction cannot be adjusted. As a result, the performance of CFRP parts is deficient in the fixed direction. To address the issue, this paper proposes a variable deposition direction (VDD) 3D printing process for CFRP. The process optimises the mechanical properties of the moulded part by adjusting the direction of deposition. The principles and processes of the VDD 3D printing are described in detail. Then, using the hollow cylinder as an example, a mathematical model of the variable deposition direction structure is developed, and subsequent simulations is conducted to evaluate its mechanical properties. In the experimental part, the composite material used has a fibre content of 20% and consists of PETG and carbon fibres. The VDD hollow cylindrical parts have been printed to verify the feasibility of the process. And performance testing experiments were carried out on a variety of test specimens of different structures with VDD. The results show that adjusting the deposition direction of the CFRP can greatly improve the tensile properties of hollow cylinder. The tensile properties of a suitable structure with VDD were improved by a factor of 69.4 compared to a single deposition direction structure. And the actual tensile situation is consistent with the simulation. To summarise, the proposed method can effectively solve the defects of the traditional process and optimise the mechanical properties of the moulded parts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变沉积方向连续纤维增强复合材料的3D打印工艺
连续纤维增强聚合物(CFRP)具有明显的各向异性。在传统的3D打印工艺中,沉积方向无法调整。因此,CFRP零件在固定方向上的性能不足。针对这一问题,本文提出了一种可变沉积方向(VDD) CFRP 3D打印工艺。该工艺通过调整沉积方向来优化成型零件的机械性能。详细介绍了VDD 3D打印的原理和过程。然后,以空心圆筒为例,建立了变沉积方向结构的数学模型,并进行了后续的仿真,对其力学性能进行了评价。在实验部分,使用的复合材料纤维含量为20%,由PETG和碳纤维组成。对VDD中空圆柱件进行了打印,验证了该工艺的可行性。利用VDD对不同结构的多种试件进行了性能测试实验。结果表明,调整CFRP的沉积方向可以显著提高空心圆筒的拉伸性能。与单一沉积方向的结构相比,合适的VDD结构的拉伸性能提高了69.4倍。实际拉伸情况与模拟结果一致。综上所述,所提出的方法可以有效地解决传统工艺的缺陷,优化成型零件的力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
Active suspension and steering system control of emergency rescue vehicle based on sliding mode dual robust coordination control Deterministic and stochastic model predictive energy management of hybrid electric vehicles using two improved speed predictors Multi-verse optimizer for thermal error modeling approach of spindle system based on thermal image Research on the operation and quality control of small rock hole shotcrete robot Research on cutting lubrication performance of textured tools considering slip boundary conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1