Fabrication and characterization of MgB2/SS 316L superconducting wire with amorphous boron prepared by sintering and cold rolling

Satrio Herbirowo , Akhmad Herman Yuwono , Nofrijon Sofyan , Dewi Tinambunan , Heri Nugraha , Agung Imaduddin
{"title":"Fabrication and characterization of MgB2/SS 316L superconducting wire with amorphous boron prepared by sintering and cold rolling","authors":"Satrio Herbirowo ,&nbsp;Akhmad Herman Yuwono ,&nbsp;Nofrijon Sofyan ,&nbsp;Dewi Tinambunan ,&nbsp;Heri Nugraha ,&nbsp;Agung Imaduddin","doi":"10.1016/j.mset.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium diboride (MgB<sub>2</sub>) is proposed to be a highly efficient wire with zero resistivity. In this research, Mg powder and amorphous-boron sheathed with a stainless steel (SS) 316L tube and powder-in-tube (PIT) technique were used in order to create a cheaper and potential superconductor that could eventually replace the currently expensive price crystalline boron. Mixed powder was put into SS 316L tube and compacted to avoid oxidation while being sintered at a temperature of 800 °C for one hour, prior to cold rolling with various size reduction. X-ray diffraction (XRD), scanning electron microscopy (SEM), and cryogenic magnet characterization were used to evaluate the crystal structures, surface morphology, and resistivity versus temperature and SQUID measurement for all samples. The XRD analysis revealed that the majority of the MgB<sub>2</sub> phase was produced accompanied with a small quantity of MgO and Fe phases. The results of the SEM showed particle agglomeration in the sample’s morphology. It has been found that using the size reduction up to 60 % in the cold rolling step, the critical temperature (Tc) onset of the resulting MgB<sub>2</sub> was calculated to be 39.25 and 39.44 K, respectively. This results reveal that the fabrication of the superconducting wire can be realized using a more economic raw material and process.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 409-416"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

Magnesium diboride (MgB2) is proposed to be a highly efficient wire with zero resistivity. In this research, Mg powder and amorphous-boron sheathed with a stainless steel (SS) 316L tube and powder-in-tube (PIT) technique were used in order to create a cheaper and potential superconductor that could eventually replace the currently expensive price crystalline boron. Mixed powder was put into SS 316L tube and compacted to avoid oxidation while being sintered at a temperature of 800 °C for one hour, prior to cold rolling with various size reduction. X-ray diffraction (XRD), scanning electron microscopy (SEM), and cryogenic magnet characterization were used to evaluate the crystal structures, surface morphology, and resistivity versus temperature and SQUID measurement for all samples. The XRD analysis revealed that the majority of the MgB2 phase was produced accompanied with a small quantity of MgO and Fe phases. The results of the SEM showed particle agglomeration in the sample’s morphology. It has been found that using the size reduction up to 60 % in the cold rolling step, the critical temperature (Tc) onset of the resulting MgB2 was calculated to be 39.25 and 39.44 K, respectively. This results reveal that the fabrication of the superconducting wire can be realized using a more economic raw material and process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烧结-冷轧法制备非晶硼mgb2/ss316l超导线材及其性能研究
二硼化镁(MgB2)是一种零电阻率的高效线材。在这项研究中,镁粉和非晶硼被不锈钢(SS) 316L管和管中粉末(PIT)技术包裹,以创造一种更便宜和潜在的超导体,最终可以取代目前昂贵的晶体硼。将混合好的粉末放入SS 316L管中,在800℃的温度下烧结1小时,压实防止氧化,然后进行不同尺寸的冷轧。利用x射线衍射(XRD)、扫描电镜(SEM)和低温磁体表征来评估所有样品的晶体结构、表面形貌、电阻率随温度的变化以及SQUID测量。XRD分析表明,生成的MgB2相中大部分为MgO相,少量为MgO相和Fe相。SEM结果表明,样品的形貌存在颗粒团聚现象。研究发现,在冷轧步骤中减小60%的尺寸,计算得到的MgB2的临界温度(Tc)分别为39.25 K和39.44 K。这一结果表明,采用更经济的原料和工艺可以实现超导线的制备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
期刊最新文献
Li-S-B Glass-Ceramics: A Novel electrode materials for energy storage technology Selective hydrogenation of 1,3-butadiene to butenes on ceria-supported Pd, Ni and PdNi catalysts: Combined experimental and DFT outlook Compositing LaSrMnO3 perovskite and graphene oxide nanoribbons for highly stable asymmetric electrochemical supercapacitors Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1