Pub Date : 2026-01-01DOI: 10.1016/j.mset.2026.01.002
Nebechi Kate Obiora , Chika Oliver Ujah , Benjamin Nnamdi Ekwueme , Christian O. Asadu , Peter Apata Olubambi
The goal of this critique is to examine the newer Flash Joule Heating (FJH) technique for the production of graphene and hydrogen to determine if either production method is sustainable. By conducting an in-depth evaluation into the FJH technique as well as other methods such as chemical vapor deposition, this review seeks to determine which is the most effective method. With high-voltage pulses, FJH can quickly transform waste materials rich in carbon, such as biomass and plastics, into superior quality graphene, while also producing hydrogen gas as a by-product. FJH has been estimated to use around 7.2 kJ/g of energy which is considerably lower than other methods, and it also has a higher scalability and a 90% lower carbon footprint than the classical methods and does not need as many costly catalysts and undergoes less energy demanding processes like electrolysis, which makes it more economically viable. Its usage has been extended to cover energy storage, hydrogen systems, and water purification. With such complex systems, there is bound to be variation in feedstock and defect control which can be solved using advanced AI/ML optimization and better pre-treatments. FJH is one step closer to achieving circular economy goals by turning waste products into materials of value, demonstrating the ability to mass produce hydrogen and graphene in an economical manner to aid in the ideal of a carbon–neutral energy future.
{"title":"Production of sustainable graphene and its derivatives through flash joule heating: A systemic review","authors":"Nebechi Kate Obiora , Chika Oliver Ujah , Benjamin Nnamdi Ekwueme , Christian O. Asadu , Peter Apata Olubambi","doi":"10.1016/j.mset.2026.01.002","DOIUrl":"10.1016/j.mset.2026.01.002","url":null,"abstract":"<div><div>The goal of this critique is to examine the newer Flash Joule Heating (FJH) technique for the production of graphene and hydrogen to determine if either production method is sustainable. By conducting an in-depth evaluation into the FJH technique as well as other methods such as chemical vapor deposition, this review seeks to determine which is the most effective method. With high-voltage pulses, FJH can quickly transform waste materials rich in carbon, such as biomass and plastics, into superior quality graphene, while also producing hydrogen gas as a by-product. FJH has been estimated to use around 7.2 kJ/g of energy which is considerably lower than other methods, and it also has a higher scalability and a 90% lower carbon footprint than the classical methods and does not need as many costly catalysts and undergoes less energy demanding processes like electrolysis, which makes it more economically viable. Its usage has been extended to cover energy storage, hydrogen systems, and water purification. With such complex systems, there is bound to be variation in feedstock and defect control which can be solved using advanced AI/ML optimization and better pre-treatments. FJH is one step closer to achieving circular economy goals by turning waste products into materials of value, demonstrating the ability to mass produce hydrogen and graphene in an economical manner to aid in the ideal of a carbon–neutral energy future.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"9 ","pages":"Pages 14-31"},"PeriodicalIF":0.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146090553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the impact of carbon nanotube (CNT) incorporation on the electrochemical performance of polyvinyl alcohol (PVA)/HCl/TEOS-based solid polymer electrolytes for rechargeable aluminium-air batteries. CNTs were introduced in varying quantities (0–0.05 g), while a polylactic acid (PLA) nanofiber layer containing carbon quantum dots (CQDs) was integrated as a separator to enhance ion transport. The inclusion of CNTs improved the amorphous structure, as evidenced by X-ray diffraction (XRD), and optimized ionic pathways within the polymer-silica network. The PHT0.05CNT membrane exhibited the highest ionic conductivity of 6.25 × 10−3 S cm−1, while transference number analysis confirmed predominant ionic conduction (Tion = 0.923). Among the tested compositions, PHT0.02CNT achieved the best battery performance, delivering a capacity of 0.4168 mAh g−1 and an energy density of 0.145 mWh g−1. Cyclic voltammetry further demonstrated enhanced redox reversibility with the addition of CNTs. These findings underscore that controlled CNT incorporation significantly enhances ion transport and electrochemical performance, suggesting strong potential for developing high-efficiency aluminium-air batteries.
本文研究了碳纳米管(CNT)掺入对聚乙烯醇(PVA)/HCl/ teos基固体聚合物电解质用于可充电铝空气电池的电化学性能的影响。加入不同数量的碳纳米管(0-0.05 g),同时集成含有碳量子点(CQDs)的聚乳酸(PLA)纳米纤维层作为分离器以增强离子传输。x射线衍射(XRD)结果表明,CNTs的加入改善了聚合物-二氧化硅网络的非晶结构,并优化了聚合物-二氧化硅网络内的离子路径。PHT0.05CNT膜的离子电导率最高,为6.25 × 10−3 S cm−1,迁移数分析证实其离子电导率最高(Tion = 0.923)。在测试的组合物中,pht0.02碳纳米管的电池性能最好,容量为0.4168 mAh g−1,能量密度为0.145 mWh g−1。循环伏安法进一步证明了CNTs的加入增强了氧化还原可逆性。这些发现强调,可控碳纳米管掺入显著提高离子传输和电化学性能,表明开发高效铝-空气电池的巨大潜力。
{"title":"Enhanced ion transport in CNT-doped PVA/HCl/TEOS electrolyte membranes for aluminium-air batteries","authors":"Firman Ridwan , Gifahri Renardy , Dean Bilalwa Agusto , Darwison Darwison","doi":"10.1016/j.mset.2025.12.001","DOIUrl":"10.1016/j.mset.2025.12.001","url":null,"abstract":"<div><div>This study investigates the impact of carbon nanotube (CNT) incorporation on the electrochemical performance of polyvinyl alcohol (PVA)/HCl/TEOS-based solid polymer electrolytes for rechargeable aluminium-air batteries. CNTs were introduced in varying quantities (0–0.05 g), while a polylactic acid (PLA) nanofiber layer containing carbon quantum dots (CQDs) was integrated as a separator to enhance ion transport. The inclusion of CNTs improved the amorphous structure, as evidenced by X-ray diffraction (XRD), and optimized ionic pathways within the polymer-silica network. The PHT0.05CNT membrane exhibited the highest ionic conductivity of 6.25 × 10<sup>−3</sup> S cm<sup>−1</sup>, while transference number analysis confirmed predominant ionic conduction (T<sub>ion</sub> = 0.923). Among the tested compositions, PHT0.02CNT achieved the best battery performance, delivering a capacity of 0.4168 mAh g<sup>−1</sup> and an energy density of 0.145 mWh g<sup>−1</sup>. Cyclic voltammetry further demonstrated enhanced redox reversibility with the addition of CNTs. These findings underscore that controlled CNT incorporation significantly enhances ion transport and electrochemical performance, suggesting strong potential for developing high-efficiency aluminium-air batteries.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"9 ","pages":"Pages 1-13"},"PeriodicalIF":0.0,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145771897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.mset.2025.07.001
Muhammad , Nofrijon Sofyan , Akhmad Herman Yuwono , Donanta Dhaneswara
Global energy security has been destabilized by post-pandemic disruptions, geopolitical instability, and climate-related events, accelerating the need for sustainable alternatives such as solar technologies. Dye-sensitized solar cells (DSSCs), a cost-effective and environmentally friendly third-generation photovoltaic technology, have attracted significant research interest in recent decades, particularly in enhancing the properties of the photoanode material. This review emphasizes the role of green synthesis approaches as promising alternatives to conventional chemical methods. These eco-friendly strategies utilize biological compounds as reducing and capping agents, enabling better control over particle size and morphology, improving DSSC performance by enhancing electron transport properties and dye-loading capacity. However, product consistency and reproducibility issues remain significant challenges, particularly for scaling up and commercialization. This paper also outlines future directions, including extract fingerprinting, hybrid nanostructure development, and integrating artificial intelligence and machine learning for synthesis optimization. The green synthesis of TiO2 nanoparticles holds strong potential for advancing DSSC performance while supporting the transition toward sustainable energy technologies.
{"title":"A review on green synthesis of TiO2 nanoparticles: enhancing DSSC performance and exploring future opportunities","authors":"Muhammad , Nofrijon Sofyan , Akhmad Herman Yuwono , Donanta Dhaneswara","doi":"10.1016/j.mset.2025.07.001","DOIUrl":"10.1016/j.mset.2025.07.001","url":null,"abstract":"<div><div>Global energy security has been destabilized by post-pandemic disruptions, geopolitical instability, and climate-related events, accelerating the need for sustainable alternatives such as solar technologies. Dye-sensitized solar cells (DSSCs), a cost-effective and environmentally friendly third-generation photovoltaic technology, have attracted significant research interest in recent decades, particularly in enhancing the properties of the photoanode material. This review emphasizes the role of green synthesis approaches as promising alternatives to conventional chemical methods. These eco-friendly strategies utilize biological compounds as reducing and capping agents, enabling better control over particle size and morphology, improving DSSC performance by enhancing electron transport properties and dye-loading capacity. However, product consistency and reproducibility issues remain significant challenges, particularly for scaling up and commercialization. This paper also outlines future directions, including extract fingerprinting, hybrid nanostructure development, and integrating artificial intelligence and machine learning for synthesis optimization. The green synthesis of TiO<sub>2</sub> nanoparticles holds strong potential for advancing DSSC performance while supporting the transition toward sustainable energy technologies.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 188-199"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144685850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.mset.2025.07.002
Ermiya Prasad P. , Y.Ranjith Kumar , Sudhir D. Jagadale , Chepuri R.K. Rao , Sidhanath V. Bhosale
In the rapidly growing modern era, the advancement of electrochemical energy storage (EES) materials for electronic devices is a key challenge. Herein, we report the synthesis of novel redox-active polyureas (PUrs) bearing carbonyl functional group and repeated redox segments starting from the redox-active amine-capped trianiline (ACTA) and amine-capped tetraaniline (ACTAni). These materials are doped with 2 M HCl and designated as DPTA and DPTAni. The material properties and surface analysis are thoroughly analyzed by fourier transform infrared (FT-IR) spectroscopy, UV–Vis absorption spectroscopy, field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. In a three-electrode (3E) system, DPTA achieves a high specific capacitance (Csp) of 260.9 F/g, outperforming DPTAni of 239 F/g, as determined by galvanostatic charge–discharge (GCD) measurements. However, long-term cycling stability exhibits the capacitance retention for DPTA and DPTAni was about 59.12 % and 46.38 %, respectively, for 2000 cycles and with a significant decrement of Csp for 5000 cycles owing to an increase in the solution resistance, as confirmed by Electrochemical impedance spectroscopy (EIS). This study highlights the potential of carbonyl-functionalized PUrs as promising candidates for next-generation pseudo-capacitive materials, with further optimizations for enhancing cycling stability.
{"title":"Exploration of acid-doped polyureas with redox-active aniline oligomers for supercapacitor applications","authors":"Ermiya Prasad P. , Y.Ranjith Kumar , Sudhir D. Jagadale , Chepuri R.K. Rao , Sidhanath V. Bhosale","doi":"10.1016/j.mset.2025.07.002","DOIUrl":"10.1016/j.mset.2025.07.002","url":null,"abstract":"<div><div>In the rapidly growing modern era, the advancement of electrochemical energy storage (EES) materials for electronic devices is a key challenge. Herein, we report the synthesis of novel redox-active polyureas (PUrs) bearing carbonyl functional group and repeated redox segments starting from the redox-active amine-capped trianiline (ACTA) and amine-capped tetraaniline (ACTAni). These materials are doped with 2 M HCl and designated as DPTA and DPTAni. The material properties and surface analysis are thoroughly analyzed by fourier transform infrared (FT-IR) spectroscopy, UV–Vis absorption spectroscopy, field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. In a three-electrode (3E) system, DPTA achieves a high specific capacitance (<em>C</em><sub>sp</sub>) of 260.9 F/g, outperforming DPTAni of 239 F/g, as determined by galvanostatic charge–discharge (GCD) measurements. However, long-term cycling stability exhibits the capacitance retention for DPTA and DPTAni was about 59.12 % and 46.38 %, respectively, for 2000 cycles and with a significant decrement of <em>C</em><sub>sp</sub> for 5000 cycles owing to an increase in the solution resistance, as confirmed by Electrochemical impedance spectroscopy (EIS). This study highlights the potential of carbonyl-functionalized PUrs as promising candidates for next-generation pseudo-capacitive materials, with further optimizations for enhancing cycling stability.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 231-242"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144932310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manganese- and cobalt-based materials are considered promising cathode candidates for zinc-ion batteries (ZIBs) due to their environmental sustainability, high specific capacities, and the natural abundance of their constituent elements compared to those used in other metal-ion battery technologies. Nonetheless, their extensive utilization is impeded by sluggish kinetics and suboptimal durability. In addressing these challenges through nanostructure engineering, we present a novel approach by tailoring the Mn/Co ratio to synthesize MnCo2O4 (MCO) and CoMn2O4 (CMO) entrapped carbon nanofibers (CNFs) via the electrospinning technique and post-treatment. MCO-CNFs and CMO-CNFs exhibit excellent performance as zinc cathodes in ZIBs, achieving initial specific capacities of 501.94 mAh g−1 and 399.32 mAh g−1 at 0.05 A g−1, respectively. CMO-CNFs demonstrate superior rate performance at high current densities, whereas MCO-CNFs exhibit better cycle stability. This complementary behavior highlights the tunable electrochemical characteristics enabled by Mn/Co ratio adjustment. Insightfully, the influence of the Mn/Co ratio on the electronic state of the elements and the electrochemical storage behavior of ZIBs during the charge/discharge process is convincingly explored using ex-situ techniques such as scanning electron microscopy and operando X-ray absorption near-edge structure, proving that MCO-CNFs are more stable and redox-reversible than CMO-CNFs.
与其他金属离子电池技术相比,锰基和钴基材料由于其环境可持续性、高比容量以及其组成元素的天然丰度而被认为是锌离子电池(zib)极有前途的阴极候选者。然而,它们的广泛利用受到缓慢的动力学和次优耐久性的阻碍。为了解决这些挑战,我们提出了一种新的方法,通过静电纺丝技术和后处理,通过调整Mn/Co比来合成MnCo2O4 (MCO)和CoMn2O4 (CMO)包裹的碳纳米纤维(CNFs)。MCO-CNFs和CMO-CNFs在zbs中表现出优异的锌阴极性能,在0.05 A g−1下分别达到501.94 mAh g−1和399.32 mAh g−1。CMO-CNFs在高电流密度下表现出优越的速率性能,而MCO-CNFs表现出更好的循环稳定性。这种互补行为突出了Mn/Co比例调节所实现的可调谐电化学特性。利用扫描电镜和operando x射线吸收近边结构等非原位技术,深入研究了Mn/Co比对元素电子态和zbs在充放电过程中的电化学存储行为的影响,证明了MCO-CNFs比cmos - cnfs更稳定、更氧化还原可逆。
{"title":"Tailoring the Mn/Co ratio in electrospun Mn-Co oxide embedded-carbon nanofibers as cathode for high-performance zinc-ion batteries","authors":"Adnan Ahmed , Amornrat Khampuanbut , Pinit Kidkhunthod , Wanwisa Limphirat , Hiroshi Uyama , Manunya Okhawilai , Prasit Pattananuwat","doi":"10.1016/j.mset.2025.08.001","DOIUrl":"10.1016/j.mset.2025.08.001","url":null,"abstract":"<div><div>Manganese- and cobalt-based materials are considered promising cathode candidates for zinc-ion batteries (ZIBs) due to their environmental sustainability, high specific capacities, and the natural abundance of their constituent elements compared to those used in other metal-ion battery technologies. Nonetheless, their extensive utilization is impeded by sluggish kinetics and suboptimal durability. In addressing these challenges through nanostructure engineering, we present a novel approach by tailoring the Mn/Co ratio to synthesize MnCo<sub>2</sub>O<sub>4</sub> (MCO) and CoMn<sub>2</sub>O<sub>4</sub> (CMO) entrapped carbon nanofibers (CNFs) via the electrospinning technique and post-treatment. MCO-CNFs and CMO-CNFs exhibit excellent performance as zinc cathodes in ZIBs, achieving initial specific capacities of 501.94 mAh g<sup>−1</sup> and 399.32 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup>, respectively. CMO-CNFs demonstrate superior rate performance at high current densities, whereas MCO-CNFs exhibit better cycle stability. This complementary behavior highlights the tunable electrochemical characteristics enabled by Mn/Co ratio adjustment. Insightfully, the influence of the Mn/Co ratio on the electronic state<!--> <!-->of the elements and the electrochemical storage behavior of ZIBs during the charge/discharge process is convincingly explored using ex-situ techniques such as scanning electron microscopy and operando X-ray absorption near-edge structure, proving that MCO-CNFs are more stable and redox-reversible than CMO-CNFs.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 219-230"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144907620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plastic pollution and water scarcity are urgent global challenges that demand sustainable solutions. Municipal solid waste (MSW), including plastic waste, is a crucial environmental challenge that contributes to global pollution and threatens ecosystems. MSW can be used in various applications beyond disposal, such as energy recovery systems, biogas production, the development of construction materials, and desalination. For instance, in interfacial solar evaporation (ISE), waste plastic efficiently produces water through solar-driven steam generation. Plastic materials possess properties such as low thermal conductivity and hydrophobicity that can enhance water evaporation efficiency. This review evaluates recent advances in plastic upcycling strategies and fabrication techniques for enhancing ISE. ISE systems using plastic garbage bags with direct repurposing reached a water evaporation rate of 8.96 kg⋅m−2⋅h−1. Repurposing plastic waste into solar evaporators, transparent solar stills, and insulation materials significantly improves water evaporation efficiency. In addition, the integration of plastic waste in ISE contributes to multiple Sustainable Development Goals (SDGs), including Clean Water and Sanitation (SDG 6), Responsible Consumption and Production (SDG 12), and Climate Action (SDG 13). Furthermore, integrating waste management strategies with innovative water purification technologies enables scholars to assess the potential of waste plastic in advancing ISE for more sustainable water evaporation.
{"title":"Valorization of plastic waste for interfacial solar evaporation: A sustainable pathway towards clean water generation","authors":"Shahd Sefelnasr , Maryam Nooman AlMallahi , Mahmoud Elgendi","doi":"10.1016/j.mset.2025.10.001","DOIUrl":"10.1016/j.mset.2025.10.001","url":null,"abstract":"<div><div>Plastic pollution and water scarcity are urgent global challenges that demand sustainable solutions. Municipal solid waste (MSW), including plastic waste, is a crucial environmental challenge that contributes to global pollution and threatens ecosystems. MSW can be used in various applications beyond disposal, such as energy recovery systems, biogas production, the development of construction materials, and desalination. For instance, in interfacial solar evaporation (ISE), waste plastic efficiently produces water through solar-driven steam generation. Plastic materials possess properties such as low thermal conductivity and hydrophobicity that can enhance water evaporation efficiency. This review evaluates recent advances in plastic upcycling strategies and fabrication techniques for enhancing ISE. ISE systems using plastic garbage bags with direct repurposing reached a water evaporation rate of 8.96 kg⋅m<sup>−2</sup>⋅h<sup>−1</sup>. Repurposing plastic waste into solar evaporators, transparent solar stills, and insulation materials significantly improves water evaporation efficiency. In addition, the integration of plastic waste in ISE contributes to multiple Sustainable Development Goals (SDGs), including Clean Water and Sanitation (SDG<!--> <!-->6), Responsible Consumption and Production (SDG<!--> <!-->12), and Climate Action (SDG<!--> <!-->13). Furthermore, integrating waste management strategies with innovative water purification technologies enables scholars to assess the potential of waste plastic in advancing ISE for more sustainable water evaporation.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 243-255"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145516495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.mset.2025.11.001
Muhammad Suliman Khan , Xiping Chen , Yanhua Liu
The valorization of hazardous spent potlining (SPL) waste into functional ceramics remains a formidable challenge due to its thermodynamic inertness and structural heterogeneity. This study presents a novel mechanochemical–thermal synthesis route enabling phase-pure formation of (Ca3Al2(SiO4)3 grossular (GSR)) garnet directly from SPL, employing Na2CO3 and CaCO3 as mineralizing additives. Post-synthesis calcination at 1200–1300 °C (at 25 °C intervals) for 5 h facilitated complete transformation into a highly ordered cubic Ia-3d garnet phase. Thermogravimetric analysis revealed sequential carbonate decomposition and volatile evolution above 1100 °C, while XRD confirmed sharp reflections characteristic of GSR garnet crystallinity. SEM analysis of the product exhibited dense, polygonal microstructures with minimal porosity and an average grain size of 2.8 µm. Elemental profiling revealed thermally activated incorporation of Ca, Al, and Si, with maximal oxide stabilization (Al2O3, CaO, and SiO2). FTIR spectra showed distinct Si-O stretching (875–1083.5 cm−1) and bending (529.88 cm−1) modes, alongside Ca-O and Al-O lattice vibrations, confirming complete oxide incorporation. Optical spectroscopy indicated a strong UV absorption edge and an indirect bandgap of 4.86 eV, consistent with DFT-predicted 4.59 eV. First-principles calculations verified high thermodynamic stability (E0 = −34347.433 eV, B0 = 192.878 GPa, ΔHf = -5755 kJ/mol) and a lattice parameter of a = 12.16 Å. The material exhibited strong UV absorption (5.6 × 103 cm−1), dielectric constant (ɛ1 = 4.8), and refractive index (n = 1.8). This work pioneers a sustainable materials design strategy, merging waste remediation with the creation of optoelectronic garnet materials for next-generation energy-related optoelectronic and ceramic applications.
{"title":"Sustainable upcycling of spent potlining waste into grossular garnet materials for energy-related optoelectronic and ceramic applications","authors":"Muhammad Suliman Khan , Xiping Chen , Yanhua Liu","doi":"10.1016/j.mset.2025.11.001","DOIUrl":"10.1016/j.mset.2025.11.001","url":null,"abstract":"<div><div>The valorization of hazardous spent potlining (SPL) waste into functional ceramics remains a formidable challenge due to its thermodynamic inertness and structural heterogeneity. This study presents a novel mechanochemical–thermal synthesis route enabling phase-pure formation of (Ca<sub>3</sub>Al<sub>2</sub>(SiO<sub>4</sub>)<sub>3</sub> grossular (GSR)) garnet directly from SPL, employing Na<sub>2</sub>CO<sub>3</sub> and CaCO<sub>3</sub> as mineralizing additives. Post-synthesis calcination at 1200–1300 °C (at 25 °C intervals) for 5 h facilitated complete transformation into a highly ordered cubic Ia-3d garnet phase. Thermogravimetric analysis revealed sequential carbonate decomposition and volatile evolution above 1100 °C, while XRD confirmed sharp reflections characteristic of GSR garnet crystallinity. SEM analysis of the product exhibited dense, polygonal microstructures with minimal porosity and an average grain size of 2.8 µm. Elemental profiling revealed thermally activated incorporation of Ca, Al, and Si, with maximal oxide stabilization (Al<sub>2</sub>O<sub>3</sub>, CaO, and SiO<sub>2</sub>). FTIR spectra showed distinct Si-O stretching (875–1083.5 cm<sup>−1</sup>) and bending (529.88 cm<sup>−1</sup>) modes, alongside Ca-O and Al-O lattice vibrations, confirming complete oxide incorporation. Optical spectroscopy indicated a strong UV absorption edge and an indirect bandgap of 4.86 eV, consistent with DFT-predicted 4.59 eV. First-principles calculations verified high thermodynamic stability (E<sub>0</sub> = −34347.433 eV, B<sub>0</sub> = 192.878 GPa, ΔH<sub>f</sub> = -5755 kJ/mol) and a lattice parameter of a = 12.16 Å. The material exhibited strong UV absorption (5.6 × 10<sup>3</sup> cm<sup>−1</sup>), dielectric constant (ɛ<sub>1</sub> = 4.8), and refractive index (n = 1.8). This work pioneers a sustainable materials design strategy, merging waste remediation with the creation of optoelectronic garnet materials for next-generation energy-related optoelectronic and ceramic applications.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 256-268"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145733056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.mset.2025.01.001
Reno Pratiwi , Muhammad Ibadurrohman , Eniya Listiani Dewi , Ratnawati , Rike Yudianti , Saddam Husein , Slamet
This study aimed to enhance the effectiveness of the simultaneous combination of electrocoagulation and photocatalysis processes by modifying the configuration of the photocatalyst. A heterojunction mechanism was developed by integrating CdS with a photocatalyst using a TiO2 nanotube array (TNTA) [1]. This mechanism is designed to enhance photocatalytic efficiency by reducing electron-hole recombination. The successful synthesis of CdS/TNTA nanocomposite was confirmed using various characterization methods, including XRD, HRTEM, FESEM, UV–Vis DRS, PL, transient photocurrent, and XPS. The results showed that CdS/TNTA worked better than TNTA in a single photocatalysis process, achieving improved Ciprofloxacin (CIP) removal (7.9 % to 13.8 %) and hydrogen gas production (0.006 to 0.156 mmol/m2plate). Simultaneously operating electrocoagulation and photocatalysis systems in the respective optimized settings resulted in significant enhancements. Hydrogen gas yield increased by 44 % (from 443 to 636 mmol/m2 plate) compared to using only TNTA, while CIP removal improved from 79 % to 83 %. This study demonstrates that the synthesis of CdS/TNTA photocatalysts may be a promising approach to achieving high performance of hydrogen recovery while simultaneously removing CIP from wastewater.
{"title":"Development of CdS/TNTA nanocomposite to improve performance of simultaneous electrocoagulation-photocatalysis process for hydrogen production and ciprofloxacin elimination","authors":"Reno Pratiwi , Muhammad Ibadurrohman , Eniya Listiani Dewi , Ratnawati , Rike Yudianti , Saddam Husein , Slamet","doi":"10.1016/j.mset.2025.01.001","DOIUrl":"10.1016/j.mset.2025.01.001","url":null,"abstract":"<div><div>This study aimed to enhance the effectiveness of the simultaneous combination of electrocoagulation and photocatalysis processes by modifying the configuration of the photocatalyst. A heterojunction mechanism was developed by integrating CdS with a photocatalyst using<!--> <!-->a TiO<sub>2</sub> nanotube array (TNTA) <span><span>[1]</span></span>. This mechanism is designed to enhance photocatalytic efficiency by reducing electron-hole recombination. The successful synthesis of CdS/TNTA nanocomposite was confirmed using various characterization methods, including XRD, HRTEM, FESEM, UV–Vis DRS, PL, transient photocurrent, and XPS. The results showed that CdS/TNTA worked better than TNTA in a single photocatalysis process, achieving improved Ciprofloxacin (CIP) removal (7.9 % to 13.8 %) and hydrogen gas production (0.006 to 0.156 mmol/m<sup>2</sup>plate). Simultaneously operating electrocoagulation and photocatalysis systems in the respective optimized settings resulted in significant enhancements. Hydrogen gas yield increased by 44 % (from 443 to 636 mmol/m<sup>2</sup> plate) compared to using only TNTA, while CIP removal improved from 79 % to 83 %. This study demonstrates that the synthesis of CdS/TNTA photocatalysts may be a promising approach to achieving high performance of hydrogen recovery while simultaneously removing CIP from wastewater.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 121-130"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research has investigated the viability of valorizing Areca or Betel palm-shells into activated carbon, to be applied as an electrode active material in supercapacitors. The palm-shells are an agricultural waste from betel-nut production, an important economic crop in several regions around the world. The conversion process mainly involves pulverization, ZnCl2-activation, and carbonization. The effect of carbonization temperatures – 500, 600, 700, and 800 °C, was studied on the properties of the activated carbon. Microstructural characterizations like BET, Raman, and XPS were carried out. All the activated samples are microporous, have a specific surface area >1,000 m2 g−1, and possess an intensity ratio of D-to-G band close to 1. More than 80 % of the atomic concentration of the samples is carbon; the C 1s bonds include C=C or sp2, C–C or sp3, C–(O,N), C=O, and O–C=O or π– π*. The activated carbon synthesized at 700 °C shows the most favorable properties for being used as the electrode in supercapacitors. Its electrochemical properties, evaluated by galvanostatic charge–discharge and cyclic voltammetry deliver the maximum specific capacitances of 144.48F·g−1 at 1 A·g−1 and 169.21F·g−1 20 mV·s−1, respectively. The supercapacitors do perform stably at long-term cycling with the capacitance retention (>98 %) and the coulombic efficiency at almost 100 % over 50,000 cycles. The betel-palm-shell carbon has a very comparable capacitive performance to other biomass-derived carbons with the respective maximum energy and powder densities of 7.63 Wh·kg−1 and 5,849.93 W·kg−1. Converting the betel-palm-shell waste, one of the common agricultural wastes in Asia, Oceania, Africa, or Latin America to activated carbon is a pathway of waste valorization as well as leads to a new business opportunity of producing carbon electrodes for an energy application of supercapacitors. This will further go towards a circular carbon economy, not only reducing the carbon footprint and other pollution caused by currently widely practiced incineration, but also creating a sustainable loop of material utilization.
{"title":"Highly porous activated carbon from betel palm shells as the prospective electrode for high-performance supercapacitors","authors":"Panuwat Torrarit , Sirilux Poompradub , Mahshid Mohammadifar , Prasit Pattananuwat , Theerthagiri Jayaraman , Yujeong Jeong , Narong Chanlek , Myong Yong Choi , Jitti Kasemchainan","doi":"10.1016/j.mset.2025.03.001","DOIUrl":"10.1016/j.mset.2025.03.001","url":null,"abstract":"<div><div>This research has investigated the viability of valorizing Areca or Betel palm-shells into activated carbon, to be applied as an electrode active material in supercapacitors. The palm-shells are an agricultural waste from betel-nut production, an important economic crop in several regions around the world. The conversion process mainly involves pulverization, ZnCl<sub>2</sub>-activation, and carbonization. The effect of carbonization temperatures – 500, 600, 700, and 800 °C, was studied on the properties of the activated carbon. Microstructural characterizations like BET, Raman, and XPS were carried out. All the activated samples are microporous, have a specific surface area >1,000 m<sup>2</sup> g<sup>−1</sup>, and possess an intensity ratio of D-to-G band close to 1. More than 80 % of the atomic concentration of the samples is carbon; the C 1s bonds include C=C or sp<sup>2</sup>, C–C or sp<sup>3</sup>, C–(O,N), C=O, and O–C=O or π– π*. The activated carbon synthesized at 700 °C shows the most favorable properties for being used as the electrode in supercapacitors. Its electrochemical properties, evaluated by galvanostatic charge–discharge and cyclic voltammetry deliver the maximum specific capacitances of 144.48F·g<sup>−1</sup> at 1 A·g<sup>−1</sup> and 169.21F·g<sup>−1</sup> 20 mV·s<sup>−1</sup>, respectively. The supercapacitors do perform stably at long-term cycling with the capacitance retention (>98 %) and the coulombic efficiency at almost 100 % over 50,000 cycles. The betel-palm-shell carbon has a very comparable capacitive performance to other biomass-derived carbons with the respective maximum energy and powder densities of 7.63 Wh·kg<sup>−1</sup> and 5,849.93 W·kg<sup>−1</sup>. Converting the betel-palm-shell waste, one of the common agricultural wastes in Asia, Oceania, Africa, or Latin America to activated carbon is a pathway of waste valorization as well as leads to a new business opportunity of producing carbon electrodes for an energy application of supercapacitors. This will further go towards a circular carbon economy, not only reducing the carbon footprint and other pollution caused by currently widely practiced incineration, but also creating a sustainable loop of material utilization.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 143-153"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143865027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.mset.2025.06.001
Mengyao Chen , Jiajia Gui , Huimin Wang , Jiaju Wang , Fei Huang , Lixin Xue
A cross substrate counter diffusion (CSCD) process between the solutions of Zn(II) solution and 2-methyl imidazole (2-MIM)-ammonia solution (pH = 10) to in situ grow ZIF-8 particles was developed to enhance the performance of polyamide (PA)/polyethylene(PE) based thin film composite (TFC) total heat exchange membranes (THEMs). In situ grown ZIF particles from CSCD processes had effectively blocked CO2 leakages across the PA separating layer by sealing the defect points, and provided selective water vapor permeating channels and surface area to enhance energy recovery efficiencies. The effects of Zn(II) loading concentration, CSCD reaction time and ligand type on the structure, CO2 barrier property and heat exchange efficiencies were systematically investigated. Under optimized conditions, sealing with ZIF-8 particles could decrease the CO2 permeance from 7.5 GPU to 1.15 GPU, at the same time, increase the sensible heat, latent heat and heat exchange efficiencies from 80 %, 53 %, 68 % to 96 %, 73 % and 82 % respectively.
{"title":"Superior polyethylene based total heat exchange membranes made from sealing polyamide separating layers with in situ grown ZIF-8 particles","authors":"Mengyao Chen , Jiajia Gui , Huimin Wang , Jiaju Wang , Fei Huang , Lixin Xue","doi":"10.1016/j.mset.2025.06.001","DOIUrl":"10.1016/j.mset.2025.06.001","url":null,"abstract":"<div><div>A cross substrate counter diffusion (CSCD) process between the solutions of Zn(II) solution and 2-methyl imidazole (2-MIM)-ammonia solution (pH = 10) to <em>in situ</em> grow ZIF-8 particles was developed to enhance the performance of polyamide (PA)/polyethylene(PE) based thin film composite (TFC) total heat exchange membranes (THEMs). <em>In situ</em> grown ZIF particles from CSCD processes had effectively blocked CO<sub>2</sub> leakages across the PA separating layer by sealing the defect points, and provided selective water vapor permeating channels and surface area to enhance energy recovery efficiencies. The effects of Zn(II) loading concentration, CSCD reaction time and ligand type on the structure, CO<sub>2</sub> barrier property and heat exchange efficiencies were systematically investigated. Under optimized conditions, sealing with ZIF-8 particles could decrease the CO<sub>2</sub> permeance from 7.5 GPU to 1.15 GPU, at the same time, increase the sensible heat, latent heat and heat exchange efficiencies from 80 %, 53 %, 68 % to 96 %, 73 % and 82 % respectively.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 167-177"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144656035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}