This study employs a cost-efficient method to create a pliable BC/rGO-NiCo-LDH electrode film on a bacterial cellulose base. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analyses verified the incorporation of reduced graphene oxide (rGO) and nickel–cobalt layered double hydroxide (NiCo-LDH) into the bacterial cellulose structure. The BC/rGO-NiCo-LDH composite material exhibited high-temperature stability and achieved a specific capacitance of 311 F g−1 at a scan rate of 0.1 mV/s, surpassing that of earlier cellulose electrodes. The electrode film showed exceptional mechanical capabilities, displaying flexibility and load resistance without any structural damage. The film’s flexibility and lightweight properties were improved due to the low density of 0.656 g cm−3, which is a result of the nanoporous structure and intrinsic low density of rGO and cellulose. A retention ratio of 0.40 for storage modulus at a glass transition temperature of around 90°C demonstrated positive mechanical performance. This cost-effective and uncomplicated synthesis approach produced a BC/rGO-NiCo-LDH electrode with potential. The material possessed favourable mechanical and electrochemical characteristics, making it suitable for wearable electronics.
Hydrogen has attracted growing research interest due to its exceptionally high energy per mass content and being a clean energy carrier, unlike the widely used hydrocarbon fuels. With the possibility of long-term energy storage and re-electrification, hydrogen promises to promote the effective utilization of renewable and sustainable energy resources. Clean hydrogen can be produced through a renewable-powered water electrolysis process. Although alkaline water electrolysis is currently the mature and commercially available electrolysis technology for hydrogen production, it has several shortcomings that hinder its integration with intermittent and fluctuating renewable energy sources. The proton exchange membrane water electrolysis (PEMWE) technology has been developed to offer high voltage efficiencies at high current densities. Besides, PEMWE cells are characterized by a fast system response to fluctuating renewable power, enabling operations at broader partial power load ranges while consistently delivering high-purity hydrogen with low ohmic losses. Recently, much effort has been devoted to improving the efficiency, performance, durability, and economy of PEMWE cells. The research activities in this context include investigations of different cell component materials, protective coatings, and material characterizations, as well as the synthesis and analysis of new electrocatalysts for enhanced electrochemical activity and stability with minimized use of noble metals. Further, many modeling studies have been reported to analyze cell performance considering cell electrochemistry, overvoltage, and thermodynamics. Thus, it is imperative to review and compile recent research studies covering multiple aspects of PEMWE cells in one literature to present advancements and limitations of this field. This article offers a comprehensive review of the state-of-the-art of PEMWE cells. It compiles recent research on each PEMWE cell component and discusses how the characteristics of these components affect the overall cell performance. In addition, the electrochemical activity and stability of various catalyst materials are reviewed. Further, the thermodynamics and electrochemistry of electrolytic water splitting are described, and inherent cell overvoltage are elucidated. The available literature on PEMWE cell modeling, aimed at analyzing the performance of PEMWE cells, is compiled. Overall, this article provides the advancements in cell components, materials, electrocatalysts, and modeling research for PEMWE to promote the effective utilization of renewable but intermittent and fluctuating energy in the pursuit of a seamless transition to clean energy.
Carbon nanofiber (CNF) derived from carbonization of bacterial cellulose (BC), with a unique three-dimensional porous nanostructure, has received significant interest in electrochemical applications. In this study, CNF samples were physically activated in CO2 at different temperatures and durations. Raman spectroscopy and FTIR analysis showed that CO2 activation caused hexagonal lattice defects, disorder, and oxygen-related functional groups in an amorphous carbon structure. CNF surface morphology changed after physical activation, reducing fiber diameter to 55 nm and introducing mesopores. Through activation temperature and time adjustments, surface area (870.1 m2/g) and micropore surface area (535.6 m2/g) and pore volume (0.2148 cm3/g) increased. EDX elemental analysis showed that activated CNF had a carbon concentration of > 90 %, while XPS analysis showed surface functional groups like C-C (sp2) and C-C (sp3) hybridization, which could improve electrolyte ion adsorption and accessibility. Electrochemical properties improved owing to CO2 activation. The optimal activation condition of 800 ℃ for 60 min resulted in the highest specific area capacitance of 552 mF cm−2 at 1 mA cm−2. This activated CNF electrode retained capacitance nearly unchanged up to 3,000 cycles. It also achieved the highest energy density of 76.7 mWh cm−2 at 500 mW cm−2. This study demonstrates the efficacy of CO2 physical activation for enhancing the electrochemical properties of CNF electrodes. The findings also highlight the importance of tailoring activation conditions, providing valuable insights for the design of advanced energy storage materials.
Cement manufacturing presents substantial environmental challenges due to the volume of waste generated, including cement ash. Therefore, it is crucial to discover novel methods to utilize cement waste effectively. This study aimed to examine the impact of different concentrations of cement ash (1, 1.5, 2, and 2.5 g) on the conductivity of PVA/TEOS/HCl (PTH) gel electrolyte materials. The primary goal was to determine the ideal concentration of cement ash that would yield maximum conductivity. The research findings demonstrated that the PTH2.5CA sample attained the greatest conductivity of 2.78 mS/cm when adding 2.5 g of cement ash. In addition, this material exhibits a capacity of 0.354 mAh, a specific capacity of 0.12826 mAh/g, and a density capacity of 0.11813 mAh/cm2. The power and power densities were measured as 6.48 mW/cm2 and 25.94 mW, respectively. These findings offer promising prospects for implementing sustainable practices in the industry and highlight the viability of utilizing cement waste as a significant element in battery membrane materials. This technique addresses environmental issues related to cement waste and contributes to advancing a more eco-friendly waste management system.