C. Riboldi, L. Trainelli, L. Mariani, A. Rolando, F. Salucci
{"title":"Predicting the effect of electric and hybrid-electric aviation on acoustic pollution","authors":"C. Riboldi, L. Trainelli, L. Mariani, A. Rolando, F. Salucci","doi":"10.1515/noise-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract In the quest for the reduction of noise pollution, novel hybrid-electric or fully-electric power-trains promise to provide a substantial contribution. Especially closer to airfields, where acceptability issues tend to limit air operations with conventional fuel-burning engines, such novel power-trains allow to fly terminal maneuvers with a dramatically reduced impact on pollution. Considering the General Aviation (GA) field, where such new types of propulsion are more likely to gain a significant market share thanks to their favorable characteristics for this weight category, the reduction of the noise impact on ground may increase the infrastructural value of smaller airfields, often located in densely populated areas. This in turn would help in making novel power-train technologies economically advantageous at a system level. Despite these evident advantages, a methodology to quantify noise emissions of a novel type of power-train has not been identified yet – a fundamental step towards the assessment of the potential contribution of hybrid-electric or fully-electric aircraft to the global scenario of future aviation. This work introduces and discusses a possible procedure to provide such estimation. While mainly focused on the field of propeller-driven GA aircraft, the procedure presented herein can be easily scaled to cope with the specific features of heavier categories.","PeriodicalId":44086,"journal":{"name":"Noise Mapping","volume":"7 1","pages":"35 - 56"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/noise-2020-0004","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Mapping","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/noise-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 22
Abstract
Abstract In the quest for the reduction of noise pollution, novel hybrid-electric or fully-electric power-trains promise to provide a substantial contribution. Especially closer to airfields, where acceptability issues tend to limit air operations with conventional fuel-burning engines, such novel power-trains allow to fly terminal maneuvers with a dramatically reduced impact on pollution. Considering the General Aviation (GA) field, where such new types of propulsion are more likely to gain a significant market share thanks to their favorable characteristics for this weight category, the reduction of the noise impact on ground may increase the infrastructural value of smaller airfields, often located in densely populated areas. This in turn would help in making novel power-train technologies economically advantageous at a system level. Despite these evident advantages, a methodology to quantify noise emissions of a novel type of power-train has not been identified yet – a fundamental step towards the assessment of the potential contribution of hybrid-electric or fully-electric aircraft to the global scenario of future aviation. This work introduces and discusses a possible procedure to provide such estimation. While mainly focused on the field of propeller-driven GA aircraft, the procedure presented herein can be easily scaled to cope with the specific features of heavier categories.
期刊介绍:
Ever since its inception, Noise Mapping has been offering fast and comprehensive peer-review, while featuring prominent researchers among its Advisory Board. As a result, the journal is set to acquire a growing reputation as the main publication in the field of noise mapping, thus leading to a significant Impact Factor. The journal aims to promote and disseminate knowledge on noise mapping through the publication of high quality peer-reviewed papers focusing on the following aspects: noise mapping and noise action plans: case studies; models and algorithms for source characterization and outdoor sound propagation: proposals, applications, comparisons, round robin tests; local, national and international policies and good practices for noise mapping, planning, management and control; evaluation of noise mitigation actions; evaluation of environmental noise exposure; actions and communications to increase public awareness of environmental noise issues; outdoor soundscape studies and mapping; classification, evaluation and preservation of quiet areas.