{"title":"DC-side stability analysis of grid-tied converter with different control modes based on electrical torque analysis","authors":"Xu Zhang, Yujun Li, Jiapeng Li, Ting Wu, Songhao Yang, Zhiguo Hao","doi":"10.1049/esi2.12110","DOIUrl":null,"url":null,"abstract":"<p>The DC-side stability of the grid-tied converter under different control modes is fully investigated using electrical torque analysis. The small-signal model of a single converter connected to an ideal DC bus under various control modes is formulated. Accordingly, the damping and synchronising coefficient contributed by the DC network and controllers of grid-tied converter are separately accessed using the electrical torque analysis method and the stabilising conditions of the grid-tied converter operating under different control modes are further derived. The system stability mainly corresponds with DC network dynamics under constant active power control mode. On the contrary, the grid-tied converter under constant DC-link voltage control mode has no stability problem. Generally, elevating the DC-link capacitance or decreasing the droop gain can greatly improve the stability margin reserve of the VSC-HVDC links. In addition, the control gains of the classical PQ controller are proven to have limited impacts on DC-side system stability. Finally, the results of numerical simulation prove the validity of the proposed stability analysis method and the stable boundary for the grid-tied converter with different control modes.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 1","pages":"31-44"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The DC-side stability of the grid-tied converter under different control modes is fully investigated using electrical torque analysis. The small-signal model of a single converter connected to an ideal DC bus under various control modes is formulated. Accordingly, the damping and synchronising coefficient contributed by the DC network and controllers of grid-tied converter are separately accessed using the electrical torque analysis method and the stabilising conditions of the grid-tied converter operating under different control modes are further derived. The system stability mainly corresponds with DC network dynamics under constant active power control mode. On the contrary, the grid-tied converter under constant DC-link voltage control mode has no stability problem. Generally, elevating the DC-link capacitance or decreasing the droop gain can greatly improve the stability margin reserve of the VSC-HVDC links. In addition, the control gains of the classical PQ controller are proven to have limited impacts on DC-side system stability. Finally, the results of numerical simulation prove the validity of the proposed stability analysis method and the stable boundary for the grid-tied converter with different control modes.