Finding or Creating a Living Organism? Past and Future Thought Experiments in Astrobiology Applied to Artificial Intelligence

IF 1.4 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Acta Biotheoretica Pub Date : 2022-04-28 DOI:10.1007/s10441-022-09438-2
Daniel S. Helman Ph.D.
{"title":"Finding or Creating a Living Organism? Past and Future Thought Experiments in Astrobiology Applied to Artificial Intelligence","authors":"Daniel S. Helman Ph.D.","doi":"10.1007/s10441-022-09438-2","DOIUrl":null,"url":null,"abstract":"<div><p>This is a digest of how various researchers in biology and astrobiology have explored questions of what defines living organisms—definitions based on functions or structures observed in organisms, or on systems terms, or on mathematical conceptions like closure, chirality, quantum mechanics and thermodynamics, or on biosemiotics, or on Darwinian evolution—to clarify the field and make it easier for endeavors in artificial intelligence to make progress. Current ideas are described to promote work between astrobiologists and computer scientists, each concerned with living organisms. A four-parameter framework is presented as a scaffold that is later developed into what machines lack to be considered alive: systems, evolution, energy and consciousness, and includes Jagers operators and the idea of dual closure. A novel definition of consciousness is developed which describes mental objects both with and without communicable properties, and this helps to clarify how consciousness in machines may be studied as an emergent process related to choice functions in systems. A perspective on how quantization, acting on nucleic acids, sets up natural limits to system behavior is offered as a partial address to the problem of biogenesis.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"70 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-022-09438-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This is a digest of how various researchers in biology and astrobiology have explored questions of what defines living organisms—definitions based on functions or structures observed in organisms, or on systems terms, or on mathematical conceptions like closure, chirality, quantum mechanics and thermodynamics, or on biosemiotics, or on Darwinian evolution—to clarify the field and make it easier for endeavors in artificial intelligence to make progress. Current ideas are described to promote work between astrobiologists and computer scientists, each concerned with living organisms. A four-parameter framework is presented as a scaffold that is later developed into what machines lack to be considered alive: systems, evolution, energy and consciousness, and includes Jagers operators and the idea of dual closure. A novel definition of consciousness is developed which describes mental objects both with and without communicable properties, and this helps to clarify how consciousness in machines may be studied as an emergent process related to choice functions in systems. A perspective on how quantization, acting on nucleic acids, sets up natural limits to system behavior is offered as a partial address to the problem of biogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻找或创造一个有生命的有机体?天体生物学应用于人工智能的过去和未来思想实验
这是一个关于生物学和天体生物学的不同研究人员如何探索如何定义生物体的问题的摘要——这些定义是基于在生物体中观察到的功能或结构,或基于系统术语,或基于闭合、手性、量子力学和热力学等数学概念,或基于生物符号学,或基于达尔文进化论——来澄清这个领域,并使人工智能的努力更容易取得进展。目前的想法被描述为促进天体生物学家和计算机科学家之间的工作,每个人都关注活的有机体。一个四参数框架作为一个框架,后来发展成为机器缺乏的东西,被认为是有生命的:系统、进化、能量和意识,包括耶格斯算子和双重闭包的想法。本文提出了一种新的意识定义,它描述了具有或不具有可传递特性的心理对象,这有助于阐明如何将机器中的意识作为与系统中选择函数相关的紧急过程进行研究。关于如何量化,作用于核酸,建立系统行为的自然限制的观点,作为部分解决生物发生问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Biotheoretica
Acta Biotheoretica 生物-生物学
CiteScore
2.70
自引率
7.70%
发文量
19
审稿时长
3 months
期刊介绍: Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory. Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts. Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified. Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.
期刊最新文献
Trypanosomosis and Transhumance: Contributions to Contemporary Conflicts Between Farmers and Herdsmen Along the Tsetse Fly Belts: Mathematical Modeling and Systematic Field Analysis Approach From Fine-Grain to Coarse-Grain Modeling: Estimating Kinetic Parameters of DNA Molecules Von Uexküll’s Umwelt Concept Revived Susceptible-Infectious-Susceptible Epidemic Model with Symmetrical Fluctuations: Equilibrium States and Stability Analyses for Finite Systems Correction: The Effects of Triiodothyronine on the Free Thyroxine Set Point Position in the Hypothalamus Pituitary Thyroid Axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1