Xuezhi Wang, A. Kealy, Christopher Gilliam, S. Haine, J. Close, B. Moran, Kyle Talbot, Simon Williams, K. Hardman, C. Freier, P. Wigley, Angela White, S. Szigeti, S. Legge
{"title":"Improving measurement performance via fusion of classical and quantum accelerometers","authors":"Xuezhi Wang, A. Kealy, Christopher Gilliam, S. Haine, J. Close, B. Moran, Kyle Talbot, Simon Williams, K. Hardman, C. Freier, P. Wigley, Angela White, S. Szigeti, S. Legge","doi":"10.1017/S0373463322000637","DOIUrl":null,"url":null,"abstract":"Abstract While quantum accelerometers sense with extremely low drift and low bias, their practical sensing capabilities face at least two limitations compared with classical accelerometers: a lower sample rate due to cold atom interrogation time; and a reduced dynamic range due to signal phase wrapping. In this paper, we propose a maximum likelihood probabilistic data fusion method, under which the actual phase of the quantum accelerometer can be unwrapped by fusing it with the output of a classical accelerometer on the platform. Consequently, the recovered measurement from the quantum accelerometer is used to estimate bias and drift of the classical accelerometer which is then removed from the system output. We demonstrate the enhanced error performance achieved by the proposed fusion method using a simulated 1D accelerometer precision test scenario. We conclude with a discussion on fusion error and potential solutions.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"76 1","pages":"91 - 102"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000637","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract While quantum accelerometers sense with extremely low drift and low bias, their practical sensing capabilities face at least two limitations compared with classical accelerometers: a lower sample rate due to cold atom interrogation time; and a reduced dynamic range due to signal phase wrapping. In this paper, we propose a maximum likelihood probabilistic data fusion method, under which the actual phase of the quantum accelerometer can be unwrapped by fusing it with the output of a classical accelerometer on the platform. Consequently, the recovered measurement from the quantum accelerometer is used to estimate bias and drift of the classical accelerometer which is then removed from the system output. We demonstrate the enhanced error performance achieved by the proposed fusion method using a simulated 1D accelerometer precision test scenario. We conclude with a discussion on fusion error and potential solutions.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.