Some aspects of using the fundamental properties of bacteriorhodopsin for recording, processing, and storage of optical information

Anna B. Druzhko
{"title":"Some aspects of using the fundamental properties of bacteriorhodopsin for recording, processing, and storage of optical information","authors":"Anna B. Druzhko","doi":"10.1016/j.jphotochemrev.2023.100620","DOIUrl":null,"url":null,"abstract":"<div><p>A review regarding the studies of light-sensitive systems based on bacteriorhodopsin is presented. Briefly given are modern ideas about bacteriorhodopsin and its molecular properties<span>, about the photocycle of its transformation. The possibilities and ways of bacteriorhodopsin modifications are shown, in particular, such as dehydration, modification using chemical additives<span>, changing the primary protein sequence by use of genetic mutants of bacteriorhodopsin, replacing the chromophore with its synthesized analogues. Such modifications can optimize the use of bacteriorhodopsin to create photosensitive recording media. Particular attention is paid to various areas of possible applications of light-sensitive materials of this type, in particular, polymer films based on bacteriorhodopsin and its derivatives, the so-called Biochrome films. The possibilities of using BR-based polymer films not only as a photochromic material for multiple recording, but also as a material for write-once recording and permanent memory (the so-called material for write-once recording of optical information) are also considered.</span></span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"56 ","pages":"Article 100620"},"PeriodicalIF":12.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556723000515","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A review regarding the studies of light-sensitive systems based on bacteriorhodopsin is presented. Briefly given are modern ideas about bacteriorhodopsin and its molecular properties, about the photocycle of its transformation. The possibilities and ways of bacteriorhodopsin modifications are shown, in particular, such as dehydration, modification using chemical additives, changing the primary protein sequence by use of genetic mutants of bacteriorhodopsin, replacing the chromophore with its synthesized analogues. Such modifications can optimize the use of bacteriorhodopsin to create photosensitive recording media. Particular attention is paid to various areas of possible applications of light-sensitive materials of this type, in particular, polymer films based on bacteriorhodopsin and its derivatives, the so-called Biochrome films. The possibilities of using BR-based polymer films not only as a photochromic material for multiple recording, but also as a material for write-once recording and permanent memory (the so-called material for write-once recording of optical information) are also considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用细菌视紫红质的基本性质记录、处理和存储光学信息的一些方面
本文综述了基于细菌视紫红质的光敏系统的研究进展。简要介绍了关于细菌视紫红质及其分子特性的现代观点,以及其转化的光循环。指出了细菌视紫红质修饰的可能性和方法,特别是脱水修饰、化学添加剂修饰、利用细菌视紫红质基因突变体改变初级蛋白序列、用其合成的类似物代替发色团等。这种修饰可以优化细菌视紫红质的使用,以创建光敏记录介质。特别关注这种类型的光敏材料的各种可能应用领域,特别是基于细菌视紫红质及其衍生物的聚合物薄膜,即所谓的生物色素薄膜。br基聚合物薄膜不仅可以作为多次记录的光致变色材料,而且还可以作为一次写入记录和永久存储(即所谓的光信息一次写入记录材料)的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.90
自引率
0.70%
发文量
36
审稿时长
47 days
期刊介绍: The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.
期刊最新文献
Biophotonics and nanorobotics for biomedical imaging, biosensing, drug delivery, and therapy Photocatalytic water splitting reaction: The pathway from semiconductors to MOFs Boron doped nanomaterials for photocatalysis Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1