{"title":"Recurrence Network based 3D Geometry Representation Learning for Quality Control in Additive Manufacturing of Metamaterials","authors":"Yujing Yang, Chen Kan","doi":"10.1115/1.4063236","DOIUrl":null,"url":null,"abstract":"\n Metamaterials are designed with intrinsic geometries to deliver unique properties, and recent years have witnessed an upsurge in leveraging additive manufacturing (AM) to produce metamaterials. However, the frequent occurrence of geometric defects in AM poses a critical obstacle to realizing the desired properties of fabricated metamaterials. Advances in three-dimensional (3D) scanning technologies enable the capture of fine-grained 3D geometric patterns, thereby providing a great opportunity for detecting geometric defects in fabricated metamaterials for property-oriented quality assurance. Realizing the full potential of 3D scanning-based quality control hinges largely on devising effective approaches to process scanned point clouds and extract geometric-pertinent information. In this study, a novel framework is developed to integrate recurrence network-based 3D geometry profiling with deep one-class learning for geometric defect detection in AM of metamaterials. First, we extend existing recurrence network models that focus on image data to representing 3D point clouds, by designing a new mechanism that characterizes points' geometric pattern affinities and spatial proximities. Then, a one-class graph neural network (GNN) approach is tailored to uncover topological variations of the recurrence network and detect anomalies that associated with geometric defects in the fabricated metamaterial. The developed methodology is evaluated through comprehensive simulated and real-world case studies. Experimental results have highlighted the efficacy of the developed methodology in identifying both global and local geometric defects in AM-fabricated metamaterials.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063236","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Metamaterials are designed with intrinsic geometries to deliver unique properties, and recent years have witnessed an upsurge in leveraging additive manufacturing (AM) to produce metamaterials. However, the frequent occurrence of geometric defects in AM poses a critical obstacle to realizing the desired properties of fabricated metamaterials. Advances in three-dimensional (3D) scanning technologies enable the capture of fine-grained 3D geometric patterns, thereby providing a great opportunity for detecting geometric defects in fabricated metamaterials for property-oriented quality assurance. Realizing the full potential of 3D scanning-based quality control hinges largely on devising effective approaches to process scanned point clouds and extract geometric-pertinent information. In this study, a novel framework is developed to integrate recurrence network-based 3D geometry profiling with deep one-class learning for geometric defect detection in AM of metamaterials. First, we extend existing recurrence network models that focus on image data to representing 3D point clouds, by designing a new mechanism that characterizes points' geometric pattern affinities and spatial proximities. Then, a one-class graph neural network (GNN) approach is tailored to uncover topological variations of the recurrence network and detect anomalies that associated with geometric defects in the fabricated metamaterial. The developed methodology is evaluated through comprehensive simulated and real-world case studies. Experimental results have highlighted the efficacy of the developed methodology in identifying both global and local geometric defects in AM-fabricated metamaterials.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining