{"title":"Rate of seismic deformation in the Gulf of Aqaba inferred from moment-tensor summation","authors":"Sattam Almadani","doi":"10.1007/s11200-020-1028-7","DOIUrl":null,"url":null,"abstract":"<p><i>This study aims to quantify the rate of coseismic deformation in the Gulf of Aqaba. Earthquake catalogue, Gutenberg-Richter relationship and fault plane solutions were integrated to measure the size and shape of deformation using the moment-tensor summation technique. First, the Gutenberg-Richter relationship was established using seismicity data from the period of 1964–2019. Then, the moment-tensor summation based on 44 focal mechanism solutions was used to calculate the shape of deformation. The eigenvalues of moment-tensor reflect the diversity of focal mechanism solutions that alternate from normal to strike-slip fault styles in the deformation zone. The analysis reveals a dominant shear deformation in the Gulf of Aqaba that extends in a direction of N42.2°E at a rate of 2.6 ± 0.04 mm yr</i><sup>?1</sup><i>and shortens in the direction of N305.2°E at a rate of 2.0 ± 0.02 mm yr</i><sup>?1</sup>. <i>These results suggest that the active deformation occurring in the Gulf of Aqaba is due to the relative tectonic movements between the Arabian and African plates, as well as Sinai subplate</i>.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"64 4","pages":"504 - 519"},"PeriodicalIF":0.5000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-020-1028-7","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-020-1028-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
This study aims to quantify the rate of coseismic deformation in the Gulf of Aqaba. Earthquake catalogue, Gutenberg-Richter relationship and fault plane solutions were integrated to measure the size and shape of deformation using the moment-tensor summation technique. First, the Gutenberg-Richter relationship was established using seismicity data from the period of 1964–2019. Then, the moment-tensor summation based on 44 focal mechanism solutions was used to calculate the shape of deformation. The eigenvalues of moment-tensor reflect the diversity of focal mechanism solutions that alternate from normal to strike-slip fault styles in the deformation zone. The analysis reveals a dominant shear deformation in the Gulf of Aqaba that extends in a direction of N42.2°E at a rate of 2.6 ± 0.04 mm yr?1and shortens in the direction of N305.2°E at a rate of 2.0 ± 0.02 mm yr?1. These results suggest that the active deformation occurring in the Gulf of Aqaba is due to the relative tectonic movements between the Arabian and African plates, as well as Sinai subplate.
本研究旨在量化亚喀巴湾同震形变的速率。结合地震目录、古腾堡-里希特关系和断层平面解,利用矩张量求和技术测量变形的大小和形状。首先,利用1964-2019年的地震活动数据建立了古腾堡-里希特关系。然后,采用基于44个焦点机构解的矩张量求和来计算变形形状。矩张量特征值反映了震源机制解的多样性,震源机制解在变形带正断层和走滑断层之间交替存在。分析表明,亚喀巴湾的主要剪切变形以2.6±0.04 mm /年的速率向N42.2°E方向延伸。沿N305.2°E方向以2.0±0.02 mm / yr的速率缩短。这些结果表明,亚喀巴湾的活动变形是由于阿拉伯板块和非洲板块以及西奈板块之间的相对构造运动造成的。
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.