Modeling COVID-19 in Cape Verde Islands - An application of SIR model

A. da Silva
{"title":"Modeling COVID-19 in Cape Verde Islands - An application of SIR model","authors":"A. da Silva","doi":"10.1515/cmb-2020-0114","DOIUrl":null,"url":null,"abstract":"Abstract The rapid and surprised emergence of COVID-19, having infected three million and killed two hundred thousand people worldwide in less than five months, has led many experts to focus on simulating its propagation dynamics in order to have an estimated outlook for the not too distante future and so supporting the local and national governments in making decisions. In this paper, we apply the SIR model to simulating the propagation dynamics of COVID-19 on the Cape Verde Islands. It will be done firstly for Santiago and Boavista Islands, and then for Cape Verde in general. The choice of Santiago rests on the fact that it is the largest island, with more than 50% of the Population of the country, whereas Boavista was chosen because it is the island where the first case of COVID-19 in Cape Verde was diagnosed. Observations made after the date of the simulations were carried out corroborate our projections.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"9 1","pages":"1 - 13"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2020-0114","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2020-0114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The rapid and surprised emergence of COVID-19, having infected three million and killed two hundred thousand people worldwide in less than five months, has led many experts to focus on simulating its propagation dynamics in order to have an estimated outlook for the not too distante future and so supporting the local and national governments in making decisions. In this paper, we apply the SIR model to simulating the propagation dynamics of COVID-19 on the Cape Verde Islands. It will be done firstly for Santiago and Boavista Islands, and then for Cape Verde in general. The choice of Santiago rests on the fact that it is the largest island, with more than 50% of the Population of the country, whereas Boavista was chosen because it is the island where the first case of COVID-19 in Cape Verde was diagnosed. Observations made after the date of the simulations were carried out corroborate our projections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
佛得角群岛新冠肺炎模型——SIR模型的应用
摘要新冠肺炎在不到五个月的时间里迅速而令人惊讶地出现,在全球范围内感染了300万人,造成20万人死亡,这促使许多专家专注于模拟其传播动态,以便对不久的未来做出估计,从而支持地方和国家政府做出决策。在本文中,我们应用SIR模型来模拟新冠肺炎在佛得角群岛的传播动态。这将首先针对圣地亚哥和博阿维斯塔群岛,然后针对整个佛得角。选择圣地亚哥是因为它是最大的岛屿,拥有该国50%以上的人口,而选择博阿维斯塔是因为该岛是佛得角第一例新冠肺炎确诊病例的岛屿。在模拟日期之后进行的观测证实了我们的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
期刊最新文献
Optimal control and bifurcation analysis of SEIHR model for COVID-19 with vaccination strategies and mask efficiency Assessing the impact of information-induced self-protection on Zika transmission: A mathematical modeling approach Optimal control of susceptible mature pest concerning disease-induced pest-natural enemy system with cost-effectiveness On building machine learning models for medical dataset with correlated features A mathematical study of the adrenocorticotropic hormone as a regulator of human gene expression in adrenal glands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1