Modelos de predicción del valor nutricional de henos de hierba

Pub Date : 2021-11-01 DOI:10.12706/itea.2021.031
S. Pereira-Crespo, A. Botana, Marcos Veiga, Laura González, C. Resch, Valentín García-Souto, Roberto Lorenzana, María del Pilar Martínez-Diz, Gonzalo Flores-Calvete
{"title":"Modelos de predicción del valor nutricional de henos de hierba","authors":"S. Pereira-Crespo, A. Botana, Marcos Veiga, Laura González, C. Resch, Valentín García-Souto, Roberto Lorenzana, María del Pilar Martínez-Diz, Gonzalo Flores-Calvete","doi":"10.12706/itea.2021.031","DOIUrl":null,"url":null,"abstract":"In the present work it is studied the predictive ability of NIRS for the estimation of chemical composition (n = 81) and organic matter digestibility (n = 52) of permanent and temporary pasture hays, being developed empirical equations based on chemical parameters to estimate the organic matter digestibility (OMD) values and compared the predictive ability of empirical models vs. NIRS equations. The collections of sam-Pereira-Crespo with standards of known in vivo digestibility (n = 38 samples). The predictive ability of the NIRS models for estimating the OMD and chemical composition ranged from excellent to good, according with the observed coefficient of determination in cross-validation (1 – VR) , higher than 0.90, except for the organic matter content (1 – VR = 0.87), whilst the ratio of the standard deviation of the original data to standard error of cross-validation ( RPD ) values were higher than 3.0 for all the parameters studied. Appl-ying NIRS models to the prediction of OMD of hay led to the reduction by half of the standard error of cross-validation ( SECV ) of the best empirical models, from ± 3.9 % to ± 1.9 %. It is concluded that the NIRS models developed in the present work as a tool for the rapid and precise nutritional evaluation of hay used in Galician dairy farms and can be satisfactorily used in routine analysis.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.12706/itea.2021.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work it is studied the predictive ability of NIRS for the estimation of chemical composition (n = 81) and organic matter digestibility (n = 52) of permanent and temporary pasture hays, being developed empirical equations based on chemical parameters to estimate the organic matter digestibility (OMD) values and compared the predictive ability of empirical models vs. NIRS equations. The collections of sam-Pereira-Crespo with standards of known in vivo digestibility (n = 38 samples). The predictive ability of the NIRS models for estimating the OMD and chemical composition ranged from excellent to good, according with the observed coefficient of determination in cross-validation (1 – VR) , higher than 0.90, except for the organic matter content (1 – VR = 0.87), whilst the ratio of the standard deviation of the original data to standard error of cross-validation ( RPD ) values were higher than 3.0 for all the parameters studied. Appl-ying NIRS models to the prediction of OMD of hay led to the reduction by half of the standard error of cross-validation ( SECV ) of the best empirical models, from ± 3.9 % to ± 1.9 %. It is concluded that the NIRS models developed in the present work as a tool for the rapid and precise nutritional evaluation of hay used in Galician dairy farms and can be satisfactorily used in routine analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
草籽营养价值预测模型
在本工作中,研究了近红外光谱对永久性和临时性牧场干草的化学成分(n=81)和有机物消化率(n=52)的预测能力,基于化学参数建立了经验方程来估计有机质消化率(OMD)值,并比较了经验模型与近红外光谱方程的预测能力。具有已知体内消化率标准(n=38个样品)的山芋样品。根据交叉验证中观察到的确定系数(1–VR),NIRS模型估计OMD和化学成分的预测能力从优秀到良好不等,高于0.90,有机物含量除外(1–VR=0.87),而对于所研究的所有参数,原始数据的标准偏差与交叉验证(RPD)值的标准误差的比率均高于3.0。将NIRS模型应用于干草OMD的预测,使最佳经验模型的交叉验证标准误差(SECV)降低了一半,从±3.9%降至±1.9%。结论是,本工作中开发的NIRS模型是对加利西亚奶牛场使用的干草进行快速准确营养评估的工具,可以令人满意地用于日常分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1