Selection and Inheritance of Tomato Resistance against Ralstonia solanacearum

Isna Maulida, R. H. Murti, T. Arwiyanto
{"title":"Selection and Inheritance of Tomato Resistance against Ralstonia solanacearum","authors":"Isna Maulida, R. H. Murti, T. Arwiyanto","doi":"10.22146/JPTI.35464","DOIUrl":null,"url":null,"abstract":"Ralstonia solanacearum is a plant pathogen causes wilting which is a major obstacle in the cultivation of tomato plants. In plant breeding, knowledge of the source of resistance genes and inheritance patterns is important in the development of bacterial wilt resistant varieties. This study aimed to obtain bacterial wilt resistant lines and to find out the inheritance pattern of tomato resistance to bacterial wilt. Selection of resistant plant involved the selected breeding lines from irradiation and crossing collections of the Genetic Laboratory, Faculty of Agriculture, Universitas Gadjah Mada. Introduced lines of H-7996 and F1 Permata and Timoti were used as a control. H-7996 as resistant parents and GM2 as susceptible parents, and their offspring include F1 GM2 x H-7996, F1 reciprocal, F2, Back Cross 1 (F1 x GM2), and Back Cross 2 (F1 x H-7996) used in testing inheritance patterns. Inoculation was carried out 1 week after planting by pouring 100 ml of water suspension of R. solanacarum (108  cfu/ml) on the roots. Completely Randomized Design (CRD) was used in this experiment. The scoring observation was carried out every week for one month. This study showed that Permata as a control was the most resistant, while Timoti and H-7996 were medium resistant. The CLN, G6, G8, and G7 lines were susceptible medium, yet only G8 and G7 with the smallest percentage of disease intensity and not significantly different than Timoti. The resistance gene to bacterial wilt on H-7996 was controlled by genes in the cell nucleus with additive-dominant gene action. Resistance to bacteria has a moderate level of heritability.","PeriodicalId":31599,"journal":{"name":"Jurnal Perlindungan Tanaman Indonesia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Perlindungan Tanaman Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/JPTI.35464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ralstonia solanacearum is a plant pathogen causes wilting which is a major obstacle in the cultivation of tomato plants. In plant breeding, knowledge of the source of resistance genes and inheritance patterns is important in the development of bacterial wilt resistant varieties. This study aimed to obtain bacterial wilt resistant lines and to find out the inheritance pattern of tomato resistance to bacterial wilt. Selection of resistant plant involved the selected breeding lines from irradiation and crossing collections of the Genetic Laboratory, Faculty of Agriculture, Universitas Gadjah Mada. Introduced lines of H-7996 and F1 Permata and Timoti were used as a control. H-7996 as resistant parents and GM2 as susceptible parents, and their offspring include F1 GM2 x H-7996, F1 reciprocal, F2, Back Cross 1 (F1 x GM2), and Back Cross 2 (F1 x H-7996) used in testing inheritance patterns. Inoculation was carried out 1 week after planting by pouring 100 ml of water suspension of R. solanacarum (108  cfu/ml) on the roots. Completely Randomized Design (CRD) was used in this experiment. The scoring observation was carried out every week for one month. This study showed that Permata as a control was the most resistant, while Timoti and H-7996 were medium resistant. The CLN, G6, G8, and G7 lines were susceptible medium, yet only G8 and G7 with the smallest percentage of disease intensity and not significantly different than Timoti. The resistance gene to bacterial wilt on H-7996 was controlled by genes in the cell nucleus with additive-dominant gene action. Resistance to bacteria has a moderate level of heritability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
番茄抗茄枯病的选择与遗传
番茄枯萎病是一种引起番茄枯萎病的植物病原菌,是番茄栽培的主要障碍。在植物育种中,了解抗性基因的来源和遗传模式对培育抗青枯病品种具有重要意义。本研究旨在获得番茄抗青枯病品系,了解番茄抗青枯病遗传规律。抗性植物的选择涉及从加扎马达大学农学院遗传实验室的辐照和杂交收集中选择的育种品系。以引进的H-7996系和F1系Permata和Timoti为对照。H-7996为抗性亲本,GM2为易感亲本,其后代包括F1 GM2 × H-7996, F1互反,F2,回交1 (F1 × GM2)和回交2 (F1 × H-7996),用于遗传模式测试。植根后1周,在根上浇上100ml (108cfu /ml)的水悬浮液进行接种。本试验采用完全随机设计(CRD)。每周进行评分观察,为期1个月。本研究表明,作为对照的Permata抗性最强,Timoti和H-7996为中抗性。CLN、G6、G8和G7系为感病中系,但只有G8和G7系病强百分比最小,与Timoti差异不显著。H-7996对青枯病的抗性基因由细胞核内具有加性显性作用的基因控制。对细菌的抗性具有中等水平的遗传性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
12 weeks
期刊最新文献
Population of Bemisia tabaci and Incidence of Yellow Disease in Chili Intercropped with Corn Isolation of Potential Antagonistic Rhizosphere Fungi against Alternaria alternata from Organic Carrot Productions Potential Antagonists Trichoderma viride as Biofungicide, Plant Spacing, and Agricultural Lime Application to Suppress Anthracnose on Chili Phytoplasma Associated with White-backed Planthopper on Rice Plants in Sidrap Regency, South Sulawesi Isolation, Characterization, and Selection of Bacillus sp. from Shallot Rhizosphere that Inhibits Fusarium oxysporum Growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1