Yoshino Hara, Yui Otake, Shingo Akita, T. Yamazaki, Fumio Takahashi, S. Yoshikawa, S. Shimada
{"title":"Gene expression of a canopy‐forming kelp, Eisenia bicyclis (Laminariales, Phaeophyceae), under high temperature stress","authors":"Yoshino Hara, Yui Otake, Shingo Akita, T. Yamazaki, Fumio Takahashi, S. Yoshikawa, S. Shimada","doi":"10.1111/pre.12497","DOIUrl":null,"url":null,"abstract":"To understand the high temperature stress acclimation of a canopy‐forming kelp, RNA‐seq analysis was performed on cultured Eisenia bicyclis (Kjellman) Setchell (Laminariales, Phaeophyceae), a major component species of kelp forests along the coast of Japan. We established a culture strain from a population at the northernmost distribution limit of this species and measured photosystem II activity in young sporophytes. We found that photosystem II activity was lower at 25°C than at 5–15°C, thus, comparative RNA‐seq analysis was conducted between cultivated young thalli of E. bicyclis at 15°C and 25°C. Comparison with the expression genes revealed 277 up‐regulated genes and 327 down‐regulated genes at 25°C. The most up‐regulated gene was 3‐ketoacyl‐CoA thiolase, which is related to fatty acid degradation. This enzyme has been reported to positively regulate abscisic acid (ABA) signaling in Arabidopsis thaliana (Brassicaceae). In addition, heat shock proteins, ATP synthase, NADH‐dehydrogenase, and L‐ascorbate peroxidase were up‐regulated. The most down‐regulated gene was taurine catabolism dioxygenase TauD/TfdA. Genes related to fatty acid metabolism, photosynthesis, and synthesis of cell wall components were down‐regulated. These results suggest that E. bicyclis may counteract high temperature stress by up‐regulating genes involved in protein stabilization, energy production and antioxidant processes. Conversely, photosynthesis and other metabolic processes may be damaged due to the inability to withstand high temperature stress.","PeriodicalId":20544,"journal":{"name":"Phycological Research","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phycological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/pre.12497","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To understand the high temperature stress acclimation of a canopy‐forming kelp, RNA‐seq analysis was performed on cultured Eisenia bicyclis (Kjellman) Setchell (Laminariales, Phaeophyceae), a major component species of kelp forests along the coast of Japan. We established a culture strain from a population at the northernmost distribution limit of this species and measured photosystem II activity in young sporophytes. We found that photosystem II activity was lower at 25°C than at 5–15°C, thus, comparative RNA‐seq analysis was conducted between cultivated young thalli of E. bicyclis at 15°C and 25°C. Comparison with the expression genes revealed 277 up‐regulated genes and 327 down‐regulated genes at 25°C. The most up‐regulated gene was 3‐ketoacyl‐CoA thiolase, which is related to fatty acid degradation. This enzyme has been reported to positively regulate abscisic acid (ABA) signaling in Arabidopsis thaliana (Brassicaceae). In addition, heat shock proteins, ATP synthase, NADH‐dehydrogenase, and L‐ascorbate peroxidase were up‐regulated. The most down‐regulated gene was taurine catabolism dioxygenase TauD/TfdA. Genes related to fatty acid metabolism, photosynthesis, and synthesis of cell wall components were down‐regulated. These results suggest that E. bicyclis may counteract high temperature stress by up‐regulating genes involved in protein stabilization, energy production and antioxidant processes. Conversely, photosynthesis and other metabolic processes may be damaged due to the inability to withstand high temperature stress.
期刊介绍:
Phycological Research is published by the Japanese Society of Phycology and complements the Japanese Journal of Phycology. The Journal publishes international, basic or applied, peer-reviewed research dealing with all aspects of phycology including ecology, taxonomy and phylogeny, evolution, genetics, molecular biology, biochemistry, cell biology, morphology, physiology, new techniques to facilitate the international exchange of results. All articles are peer-reviewed by at least two researchers expert in the filed of the submitted paper. Phycological Research has been credited by the International Association for Plant Taxonomy for the purpose of registration of new non-vascular plant names (including fossils).