{"title":"A Comparison of Two Felling Techniques Considering Stump-Height-Related Timber Value Loss","authors":"Neşe Gülci, S. Gülci, A. Akay, J. Sessions","doi":"10.5552/crojfe.2023.1743","DOIUrl":null,"url":null,"abstract":"Harvest from plantations can provide both industrial wood and forest residues for bioenergy, including stumps. The literature suggests that the choice of cutting system can affect the division between industrial wood recovery and remaining stump volume. In this study, two felling techniques - motor-manual chainsaw and feller-buncher, were compared based on stump-height-related timber value loss for four ground slope classes: high, medium, low, and flat. The economic value loss of wood material for three products - sawlogs, pulpwood, and fiber-chip wood, was determined based on the estimated volume of stumps left in the woods. The results indicated that the average stump height for the motor-manual chainsaw and feller-buncher was 17.16 cm and 8.69 cm. The economic value loss of wood material per stump was higher in felling by manual chainsaw as compared to the feller-buncher operation (log: €0.60, paper wood: €0.29, fiber-chip: €0.15). However, volume loss due to high stumps could contribute to wood for bioenergy if stumps are subsequently removed. Additional research is needed to evaluate the benefits and costs of stump removal for bioenergy as part of a total supply chain to provide both industrial wood and wood for bioenergy.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Journal of Forest Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5552/crojfe.2023.1743","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Harvest from plantations can provide both industrial wood and forest residues for bioenergy, including stumps. The literature suggests that the choice of cutting system can affect the division between industrial wood recovery and remaining stump volume. In this study, two felling techniques - motor-manual chainsaw and feller-buncher, were compared based on stump-height-related timber value loss for four ground slope classes: high, medium, low, and flat. The economic value loss of wood material for three products - sawlogs, pulpwood, and fiber-chip wood, was determined based on the estimated volume of stumps left in the woods. The results indicated that the average stump height for the motor-manual chainsaw and feller-buncher was 17.16 cm and 8.69 cm. The economic value loss of wood material per stump was higher in felling by manual chainsaw as compared to the feller-buncher operation (log: €0.60, paper wood: €0.29, fiber-chip: €0.15). However, volume loss due to high stumps could contribute to wood for bioenergy if stumps are subsequently removed. Additional research is needed to evaluate the benefits and costs of stump removal for bioenergy as part of a total supply chain to provide both industrial wood and wood for bioenergy.
期刊介绍:
Croatian Journal of Forest Engineering (CROJFE) is a refereed journal distributed internationally, publishing original research articles concerning forest engineering, both theoretical and empirical. The journal covers all aspects of forest engineering research, ranging from basic to applied subjects. In addition to research articles, preliminary research notes and subject reviews are published.
Journal Subjects and Fields:
-Harvesting systems and technologies-
Forest biomass and carbon sequestration-
Forest road network planning, management and construction-
System organization and forest operations-
IT technologies and remote sensing-
Engineering in urban forestry-
Vehicle/machine design and evaluation-
Modelling and sustainable management-
Eco-efficient technologies in forestry-
Ergonomics and work safety