{"title":"Estimating the Uncertainty of a Small Area Estimator Based on a Microsimulation Approach","authors":"Angelo Moretti, A. Whitworth","doi":"10.1177/0049124120986199","DOIUrl":null,"url":null,"abstract":"Spatial microsimulation encompasses a range of alternative methodological approaches for the small area estimation (SAE) of target population parameters from sample survey data down to target small areas in contexts where such data are desired but not otherwise available. Although widely used, an enduring limitation of spatial microsimulation SAE approaches is their current inability to deliver reliable measures of uncertainty—and hence confidence intervals—around the small area estimates produced. In this article, we overcome this key limitation via the development of a measure of uncertainty that takes into account both variance and bias, that is, the mean squared error. This new approach is evaluated via a simulation study and demonstrated in a practical application using European Union Statistics on Income and Living Conditions data to explore income levels across Italian municipalities. Evaluations show that the approach proposed delivers accurate estimates of uncertainty and is robust to nonnormal distributions. The approach provides a significant development to widely used spatial microsimulation SAE techniques.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0049124120986199","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0049124120986199","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 3
Abstract
Spatial microsimulation encompasses a range of alternative methodological approaches for the small area estimation (SAE) of target population parameters from sample survey data down to target small areas in contexts where such data are desired but not otherwise available. Although widely used, an enduring limitation of spatial microsimulation SAE approaches is their current inability to deliver reliable measures of uncertainty—and hence confidence intervals—around the small area estimates produced. In this article, we overcome this key limitation via the development of a measure of uncertainty that takes into account both variance and bias, that is, the mean squared error. This new approach is evaluated via a simulation study and demonstrated in a practical application using European Union Statistics on Income and Living Conditions data to explore income levels across Italian municipalities. Evaluations show that the approach proposed delivers accurate estimates of uncertainty and is robust to nonnormal distributions. The approach provides a significant development to widely used spatial microsimulation SAE techniques.
期刊介绍:
Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.