Quantitative analysis of reaction gases or exhaust using an online process mass spectrometer

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION Metrology and Measurement Systems Pub Date : 2023-08-28 DOI:10.24425/mms.2023.144874
Fu-Qiang Wei, Zejian Huang, X. Dai, Xiang Fang, Shang-Zhong Jin
{"title":"Quantitative analysis of reaction gases or exhaust using an online process mass spectrometer","authors":"Fu-Qiang Wei, Zejian Huang, X. Dai, Xiang Fang, Shang-Zhong Jin","doi":"10.24425/mms.2023.144874","DOIUrl":null,"url":null,"abstract":"Online quantitative analysis of reaction gases or exhaust in industrial production is of great significance to improve the production capacity and process. A novel method is developed for the online quantitative analysis of reaction gases or exhaust using quantitative mathematical models combined with the linear regression algorithm of machine learning. After accurately estimating the component gases and their contents in the reaction gases or exhaust, a ratio matrix is constructed to separate the relevant overlapping peaks. The ratio andcalibrationstandardgasesaredetected,filtered,normalized,andlinearlyregressedwithanonlineprocess massspectrometertocorrecttheratiomatricesandobtaintherelativesensitivitymatrices.Aquantitative mathematicalmodelcanbeestablishedtoobtainthecontentofeachcomponentofthereactiongasesor exhaustinrealtime.Themaximumquantificationerrorandrelativestandarddeviationofthemethodare within0.3%and1%,afteronlinequantificationoftherepresentativeyeastfermentertailgas.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology and Measurement Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/mms.2023.144874","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Online quantitative analysis of reaction gases or exhaust in industrial production is of great significance to improve the production capacity and process. A novel method is developed for the online quantitative analysis of reaction gases or exhaust using quantitative mathematical models combined with the linear regression algorithm of machine learning. After accurately estimating the component gases and their contents in the reaction gases or exhaust, a ratio matrix is constructed to separate the relevant overlapping peaks. The ratio andcalibrationstandardgasesaredetected,filtered,normalized,andlinearlyregressedwithanonlineprocess massspectrometertocorrecttheratiomatricesandobtaintherelativesensitivitymatrices.Aquantitative mathematicalmodelcanbeestablishedtoobtainthecontentofeachcomponentofthereactiongasesor exhaustinrealtime.Themaximumquantificationerrorandrelativestandarddeviationofthemethodare within0.3%and1%,afteronlinequantificationoftherepresentativeyeastfermentertailgas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用在线过程质谱仪对反应气体或废气进行定量分析
工业生产中反应气体或废气的在线定量分析对提高生产能力和工艺具有重要意义。利用定量数学模型和机器学习的线性回归算法,开发了一种在线定量分析反应气体或废气的新方法。在准确估计反应气体或废气中的组分气体及其含量后,构建比率矩阵以分离相关重叠峰。用非线性过程质谱仪对比率和校准标准气体进行检测、过滤、归一化和线性回归,以校正治疗基质,并保持相对灵敏度。可以建立一个定量的数学模型,以实时绘制反应气体或排气中各成分的含量。在对代表年的废气进行在线定量后,该方法的最大定量误差和相对标准偏差在0.3%和1%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metrology and Measurement Systems
Metrology and Measurement Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
10.00%
发文量
0
审稿时长
6 months
期刊介绍: Contributions are invited on all aspects of the research, development and applications of the measurement science and technology. The list of topics covered includes: theory and general principles of measurement; measurement of physical, chemical and biological quantities; medical measurements; sensors and transducers; measurement data acquisition; measurement signal transmission; processing and data analysis; measurement systems and embedded systems; design, manufacture and evaluation of instruments. The average publication cycle is 6 months.
期刊最新文献
148534 Selected Technical Issues of Deep Neural Networks for Image Classification Purposes Statistical process control of commercial force-sensing resistors Physical foundations determining spectral characteristics measured in Bragg gratings subjected to bending Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders – part 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1