{"title":"Dynamic response of a two-story steel structure subjected to earthquake excitation by using deterministic and nondeterministic approaches","authors":"Mustafa Qasim Dows, H. Al-Baghdadi","doi":"10.1515/jmbm-2022-0261","DOIUrl":null,"url":null,"abstract":"Abstract An earthquake is a random phenomenon in its intensity and frequency content. Since the earthquake is a signal that contains a band of frequencies, each frequency has a different energy. This means that the response of buildings to earthquakes depends not only on the intensity of the earthquake but on its frequency content as well. In this study, two different approaches have been used: deterministic approach which is the time history analysis to show how the intensity of earthquakes affects the building response, and the nondeterministic random vibration approach, which is to clarify the response in the frequency domain and to show the effect of dominant frequencies of the earthquake. Both a prototype and a 1:6 scaled model was used to simulate a two-story steel building. In the experiential part, a shaking table was used to simulate a 1:6 scaled El-Centro 1940 NS earthquake as a base excitation with different intensities (0.05, 0.15, and 0.32g). In the theoretical part, Abaqus software was adopted to simulate the numerical model of the building. The results showed that the deterministic approach may be a non-conservative approach.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract An earthquake is a random phenomenon in its intensity and frequency content. Since the earthquake is a signal that contains a band of frequencies, each frequency has a different energy. This means that the response of buildings to earthquakes depends not only on the intensity of the earthquake but on its frequency content as well. In this study, two different approaches have been used: deterministic approach which is the time history analysis to show how the intensity of earthquakes affects the building response, and the nondeterministic random vibration approach, which is to clarify the response in the frequency domain and to show the effect of dominant frequencies of the earthquake. Both a prototype and a 1:6 scaled model was used to simulate a two-story steel building. In the experiential part, a shaking table was used to simulate a 1:6 scaled El-Centro 1940 NS earthquake as a base excitation with different intensities (0.05, 0.15, and 0.32g). In the theoretical part, Abaqus software was adopted to simulate the numerical model of the building. The results showed that the deterministic approach may be a non-conservative approach.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.