Dynamic response of a two-story steel structure subjected to earthquake excitation by using deterministic and nondeterministic approaches

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of the Mechanical Behavior of Materials Pub Date : 2023-01-01 DOI:10.1515/jmbm-2022-0261
Mustafa Qasim Dows, H. Al-Baghdadi
{"title":"Dynamic response of a two-story steel structure subjected to earthquake excitation by using deterministic and nondeterministic approaches","authors":"Mustafa Qasim Dows, H. Al-Baghdadi","doi":"10.1515/jmbm-2022-0261","DOIUrl":null,"url":null,"abstract":"Abstract An earthquake is a random phenomenon in its intensity and frequency content. Since the earthquake is a signal that contains a band of frequencies, each frequency has a different energy. This means that the response of buildings to earthquakes depends not only on the intensity of the earthquake but on its frequency content as well. In this study, two different approaches have been used: deterministic approach which is the time history analysis to show how the intensity of earthquakes affects the building response, and the nondeterministic random vibration approach, which is to clarify the response in the frequency domain and to show the effect of dominant frequencies of the earthquake. Both a prototype and a 1:6 scaled model was used to simulate a two-story steel building. In the experiential part, a shaking table was used to simulate a 1:6 scaled El-Centro 1940 NS earthquake as a base excitation with different intensities (0.05, 0.15, and 0.32g). In the theoretical part, Abaqus software was adopted to simulate the numerical model of the building. The results showed that the deterministic approach may be a non-conservative approach.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract An earthquake is a random phenomenon in its intensity and frequency content. Since the earthquake is a signal that contains a band of frequencies, each frequency has a different energy. This means that the response of buildings to earthquakes depends not only on the intensity of the earthquake but on its frequency content as well. In this study, two different approaches have been used: deterministic approach which is the time history analysis to show how the intensity of earthquakes affects the building response, and the nondeterministic random vibration approach, which is to clarify the response in the frequency domain and to show the effect of dominant frequencies of the earthquake. Both a prototype and a 1:6 scaled model was used to simulate a two-story steel building. In the experiential part, a shaking table was used to simulate a 1:6 scaled El-Centro 1940 NS earthquake as a base excitation with different intensities (0.05, 0.15, and 0.32g). In the theoretical part, Abaqus software was adopted to simulate the numerical model of the building. The results showed that the deterministic approach may be a non-conservative approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用确定性和非确定性方法研究两层钢结构在地震激励下的动力响应
地震在强度和频率上都是一种随机现象。由于地震是一个包含频带的信号,每个频率都有不同的能量。这意味着建筑物对地震的反应不仅取决于地震的强度,也取决于地震的频率。在本研究中,采用了两种不同的方法:确定性方法,即时间历史分析,以显示地震强度如何影响建筑物的反应;非确定性随机振动方法,即在频域阐明响应并显示地震的主导频率的影响。原型和1:6比例模型被用来模拟一座两层钢结构建筑。实验部分采用振动台模拟El-Centro 1940 NS 1∶6比例尺地震,作为不同烈度(0.05、0.15、0.32g)的基础激励。在理论部分,采用Abaqus软件对建筑的数值模型进行仿真。结果表明,确定性方法可能是一种非保守方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
期刊最新文献
Evaluation of the mechanical and dynamic properties of scrimber wood produced from date palm fronds Performance of doubly reinforced concrete beams with GFRP bars Evaluating deformation in FRP boat: Effects of manufacturing parameters and working conditions Review of modeling schemes and machine learning algorithms for fluid rheological behavior analysis Blood flow analysis in narrow channel with activation energy and nonlinear thermal radiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1