Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan

Ariefana Ria Riszky, M. Sadikin
{"title":"Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan","authors":"Ariefana Ria Riszky, M. Sadikin","doi":"10.14710/JTSISKOM.7.3.2019.103-108","DOIUrl":null,"url":null,"abstract":"The implementation of a marketing strategy requires a reference so that promotion can be on target, such as by looking for similarities between product items. This study examines the application of the association rule method and apriori algorithm to the purchase transaction dataset to assist in forming candidate combinations among product items for customer recommended product promotion. The purchase transaction dataset was collected in October and November 2018 with a total data of 1027. In the experiment, the minimum value of support is 85%, and the minimum confidence value is 90% by processing data using the Weka software 3.9 version. Apriori algorithm can form association rules as a reference in the promotion of company products and decision support in providing product recommendations to customers based on defined minimum support and confidence values.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.7.3.2019.103-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The implementation of a marketing strategy requires a reference so that promotion can be on target, such as by looking for similarities between product items. This study examines the application of the association rule method and apriori algorithm to the purchase transaction dataset to assist in forming candidate combinations among product items for customer recommended product promotion. The purchase transaction dataset was collected in October and November 2018 with a total data of 1027. In the experiment, the minimum value of support is 85%, and the minimum confidence value is 90% by processing data using the Weka software 3.9 version. Apriori algorithm can form association rules as a reference in the promotion of company products and decision support in providing product recommendations to customers based on defined minimum support and confidence values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Apriori算法的客户产品推荐数据挖掘
营销策略的实施需要一个参考,以便推广能够达到目标,例如通过寻找产品项目之间的相似性。本研究考察了关联规则方法和apriori算法在采购交易数据集中的应用,以帮助形成客户推荐产品促销的产品项目之间的候选组合。采购交易数据集收集于2018年10月和11月,总数据为1027。在实验中,通过使用Weka软件3.9版本处理数据,支持度的最小值为85%,最小置信度值为90%。Apriori算法可以根据定义的最小支持度和置信度值,形成关联规则,作为公司产品推广的参考,以及为客户提供产品推荐的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1