{"title":"Thermo-mechanical analysis in SAE-AISI 1524 carbon steel gas tungsten arc welds","authors":"E. Bonifaz","doi":"10.1504/IJCMSSE.2018.10016541","DOIUrl":null,"url":null,"abstract":"A thermo-mechanical analysis was conducted in SAE-AISI 1524 carbon steel gas tungsten arc welds. The sequentially coupled thermal-mechanical finite element modelling approach was used to simulate the thermal and stress evolution during the GTAW process. The analysis procedure was divided into two major steps. First, a 3D transient nonlinear heat flow analysis was performed to determine the temperature distribution for the entire welding and cooling cycle of the process. In the second step, the thermal history from the heat flow model was included into the mechanical elasto-plastic calculation of the stress and deformation in the weldment. Temperature-dependent material properties and the effect of forced convection due to the flow of the shielding gas were included in the model. It is encouraging to note that the model is sufficiently accurate to predict the FZ and HAZ weld profiles as evidenced for the good agreement observed between numerical cross-sectional and metallographic temperature profiles. The successful in the results can be attributed greatly to the characteristic heat distribution parameter C selected from the complementary experimental work. For further experimental comparison purposes, numerically predicted residual stresses obtained in three different locations of two different weld situations are presented.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":"7 1","pages":"269"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCMSSE.2018.10016541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6
Abstract
A thermo-mechanical analysis was conducted in SAE-AISI 1524 carbon steel gas tungsten arc welds. The sequentially coupled thermal-mechanical finite element modelling approach was used to simulate the thermal and stress evolution during the GTAW process. The analysis procedure was divided into two major steps. First, a 3D transient nonlinear heat flow analysis was performed to determine the temperature distribution for the entire welding and cooling cycle of the process. In the second step, the thermal history from the heat flow model was included into the mechanical elasto-plastic calculation of the stress and deformation in the weldment. Temperature-dependent material properties and the effect of forced convection due to the flow of the shielding gas were included in the model. It is encouraging to note that the model is sufficiently accurate to predict the FZ and HAZ weld profiles as evidenced for the good agreement observed between numerical cross-sectional and metallographic temperature profiles. The successful in the results can be attributed greatly to the characteristic heat distribution parameter C selected from the complementary experimental work. For further experimental comparison purposes, numerically predicted residual stresses obtained in three different locations of two different weld situations are presented.
期刊介绍:
IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.