Nucleic Acid Vaccines for COVID-19: A Paradigm Shift in the Vaccine Development Arena

Vivek P. Chavda, Md Kamal Hossain, Jayesh V. Beladiya, V. Apostolopoulos
{"title":"Nucleic Acid Vaccines for COVID-19: A Paradigm Shift in the Vaccine Development Arena","authors":"Vivek P. Chavda, Md Kamal Hossain, Jayesh V. Beladiya, V. Apostolopoulos","doi":"10.3390/biologics1030020","DOIUrl":null,"url":null,"abstract":"Coronavirus disease, COVID-19, has touched every country globally except five countries (North Korea, Turkmenistan, Tonga, Tuvalu and Nauru). Vaccination is the most effective method to protect against infectious diseases. The objective is to ensure that everyone has access to a COVID-19 vaccine. The conventional vaccine development platforms are complex and time-consuming to obtain desired approved vaccine candidates through rigorous regulatory pathways. These safeguards guarantee that the optimized vaccine product is safe and efficacious for various demographic populations prior to it being approved for general use. Nucleic acid vaccines employ genetic material from a pathogen, such as a virus or bacteria, to induce an immune response against it. Based on the vaccination, the genetic material might be DNA or RNA; as such, it offers instructions for producing a specific pathogen protein that the immune system will perceive as foreign and mount an immune response. Nucleic acid vaccines for multiple antigens might be made in the same facility, lowering costs even more. Most traditional vaccine regimens do not allow for this. Herein, we demonstrate the recent understanding and advances in nucleic acid vaccines (DNA and mRNA based) against COVID-19, specifically those in human clinical trials.","PeriodicalId":93526,"journal":{"name":"Biologics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biologics1030020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Coronavirus disease, COVID-19, has touched every country globally except five countries (North Korea, Turkmenistan, Tonga, Tuvalu and Nauru). Vaccination is the most effective method to protect against infectious diseases. The objective is to ensure that everyone has access to a COVID-19 vaccine. The conventional vaccine development platforms are complex and time-consuming to obtain desired approved vaccine candidates through rigorous regulatory pathways. These safeguards guarantee that the optimized vaccine product is safe and efficacious for various demographic populations prior to it being approved for general use. Nucleic acid vaccines employ genetic material from a pathogen, such as a virus or bacteria, to induce an immune response against it. Based on the vaccination, the genetic material might be DNA or RNA; as such, it offers instructions for producing a specific pathogen protein that the immune system will perceive as foreign and mount an immune response. Nucleic acid vaccines for multiple antigens might be made in the same facility, lowering costs even more. Most traditional vaccine regimens do not allow for this. Herein, we demonstrate the recent understanding and advances in nucleic acid vaccines (DNA and mRNA based) against COVID-19, specifically those in human clinical trials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新冠肺炎核酸疫苗:疫苗研发领域的范式转变
除了朝鲜、土库曼斯坦、汤加、图瓦卢、瑙鲁等5个国家外,新冠肺炎疫情已经蔓延到世界各国。接种疫苗是预防传染病最有效的方法。目标是确保每个人都能获得COVID-19疫苗。传统的疫苗开发平台复杂且耗时,通过严格的监管途径获得所需的批准候选疫苗。这些保障措施确保优化后的疫苗产品在被批准普遍使用之前对各种人口群体是安全有效的。核酸疫苗利用来自病原体(如病毒或细菌)的遗传物质来诱导对其的免疫反应。根据疫苗接种情况,遗传物质可能是DNA或RNA;因此,它为产生一种特定的病原体蛋白质提供了指令,免疫系统将其视为外来物并发起免疫反应。针对多种抗原的核酸疫苗可以在同一工厂生产,从而进一步降低成本。大多数传统的疫苗方案不允许这种情况发生。在此,我们展示了针对COVID-19的核酸疫苗(基于DNA和mRNA)的最新认识和进展,特别是在人体临床试验中的核酸疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Role of Anti-DFS70 in the Diagnosis of Systemic Autoimmune Rheumatic Diseases Is Metagenomics the Future Routine Diagnosis Tool for Brain Abscesses? About a Case Neoantigens: The Novel Precision Cancer Immunotherapy Dose-Dependency of the Glycemic Response to Polyphenol-Rich Sugarcane Extract (PRSE) Robust Porcine GFR Measurement with Radiotracers and Only Late Blood Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1