{"title":"High Productivity at High Latitudes? Photosynthesis and Leaf Ecophysiology in Arctic Forests of the Eocene","authors":"W. Konrad, A. Roth-Nebelsick, C. Traiser","doi":"10.1029/2023PA004685","DOIUrl":null,"url":null,"abstract":"The Arctic forests of the Eocene, which thrived under elevated CO2, a temperate climate, high precipitation and annually extremely different daylengths, represent a quite spectacular no‐analogue habitat of Earth's greenhouse past. The aim of this study was to improve our understanding of the ecophysiology of Arctic broad‐leaved deciduous forests of the Eocene, by analyzing leaf photosynthesis and tree productivity based on gas exchange modeling for two fossil Eocene sites, Svalbard and Ellesmere Island. For this, a single‐leaf photosynthesis model that includes heat transfer and leaf senescence was derived. Environmental conditions were based on available palaeoclimate data and a CO2 level of 800 μmol/mol. Additionally, different light regimes (diffusivity and transmissivity) were considered. With this model, annual photosynthesis was calculated on the basis of annual temperature and day lengths (derived by celestial mechanics). To obtain productivity of a whole deciduous broad‐leaved tree, the single leaf data were then upscaled by a canopy model. The results indicate that productivity was enhanced at both high latitude sites by elevated CO2, temperature of the growing season and high maximum daylength (24 hr) during late spring and early summer. With productivity values about 30%–60% higher as for a mid‐latitude continental European forest, the results indicate a potential for high productivity at the Eocene polar sites which is in the range of extant tropical forests. In contrast to speculations, no evidence for a selective advantage of large leaf size—as shown by various fossil leaves from high latitude sites—could be found.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023PA004685","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Arctic forests of the Eocene, which thrived under elevated CO2, a temperate climate, high precipitation and annually extremely different daylengths, represent a quite spectacular no‐analogue habitat of Earth's greenhouse past. The aim of this study was to improve our understanding of the ecophysiology of Arctic broad‐leaved deciduous forests of the Eocene, by analyzing leaf photosynthesis and tree productivity based on gas exchange modeling for two fossil Eocene sites, Svalbard and Ellesmere Island. For this, a single‐leaf photosynthesis model that includes heat transfer and leaf senescence was derived. Environmental conditions were based on available palaeoclimate data and a CO2 level of 800 μmol/mol. Additionally, different light regimes (diffusivity and transmissivity) were considered. With this model, annual photosynthesis was calculated on the basis of annual temperature and day lengths (derived by celestial mechanics). To obtain productivity of a whole deciduous broad‐leaved tree, the single leaf data were then upscaled by a canopy model. The results indicate that productivity was enhanced at both high latitude sites by elevated CO2, temperature of the growing season and high maximum daylength (24 hr) during late spring and early summer. With productivity values about 30%–60% higher as for a mid‐latitude continental European forest, the results indicate a potential for high productivity at the Eocene polar sites which is in the range of extant tropical forests. In contrast to speculations, no evidence for a selective advantage of large leaf size—as shown by various fossil leaves from high latitude sites—could be found.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.