Recent developments in methane decomposition over heterogeneous catalysts: an overview

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2020-04-10 DOI:10.1007/s40243-020-00167-5
Nur Shamimie Nadzwin Hasnan, Sharifah Najiha Timmiati, Kean Long Lim, Zahira Yaakob, Nur Hidayatul Nazirah Kamaruddin, Lee Peng Teh
{"title":"Recent developments in methane decomposition over heterogeneous catalysts: an overview","authors":"Nur Shamimie Nadzwin Hasnan,&nbsp;Sharifah Najiha Timmiati,&nbsp;Kean Long Lim,&nbsp;Zahira Yaakob,&nbsp;Nur Hidayatul Nazirah Kamaruddin,&nbsp;Lee Peng Teh","doi":"10.1007/s40243-020-00167-5","DOIUrl":null,"url":null,"abstract":"<p>The production of hydrogen to be used as an alternative renewable energy has been widely explored. Among various methods for producing hydrogen from hydrocarbons, methane decomposition is suitable for generating hydrogen with zero greenhouse gas emissions. The use of high temperatures as a result of strong carbon and hydrogen (C–H) bonds may be reduced by utilizing a suitable catalyst with appropriate catalyst support. Catalysts based on transition metals are preferable in terms of their activeness, handling, and low cost in comparison with noble metals. Further development of catalysts in methane decomposition has been investigated. In this review, the recent progress on methane decomposition in terms of catalytic materials, preparation method, the physicochemical properties of the catalysts and their performance in methane decomposition were presented. The formation of carbon as part of the reaction was also discussed.</p><p>\n <b>Graphic abstract</b>\n </p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-020-00167-5","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-020-00167-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 57

Abstract

The production of hydrogen to be used as an alternative renewable energy has been widely explored. Among various methods for producing hydrogen from hydrocarbons, methane decomposition is suitable for generating hydrogen with zero greenhouse gas emissions. The use of high temperatures as a result of strong carbon and hydrogen (C–H) bonds may be reduced by utilizing a suitable catalyst with appropriate catalyst support. Catalysts based on transition metals are preferable in terms of their activeness, handling, and low cost in comparison with noble metals. Further development of catalysts in methane decomposition has been investigated. In this review, the recent progress on methane decomposition in terms of catalytic materials, preparation method, the physicochemical properties of the catalysts and their performance in methane decomposition were presented. The formation of carbon as part of the reaction was also discussed.

Graphic abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多相催化剂上甲烷分解的最新进展综述
氢的生产作为一种可替代的可再生能源已经被广泛探索。在各种碳氢化合物制氢的方法中,甲烷分解法适用于零温室气体排放的制氢方法。由于碳和氢(C-H)键强,可以通过使用合适的催化剂和适当的催化剂载体来减少高温的使用。与贵金属相比,基于过渡金属的催化剂在活性、可处理性和低成本方面更可取。探讨了甲烷分解催化剂的进一步发展。本文从催化材料、制备方法、催化剂的理化性质及其在甲烷分解中的性能等方面综述了近年来甲烷分解的研究进展。还讨论了反应中碳的形成。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Effect of scandium concentration on the performances of cantilever based AlN unimorph piezoelectric energy harvester with silicon nitride substrate Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors The photothermal properties of hydrogel nanocomposite embedded with ZnO/CuO based on PVA/GA/activated carbon for solar-driven interfacial evaporation Formulation and development of composite materials for thermally driven and storage-integrated cooling technologies: a review Novel Nafion nanocomposite membranes embedded with TiO2-decorated MWCNTs for high-temperature/low relative humidity fuel cell systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1