{"title":"A dynamic process interpretation of the sparse ERGM reference model","authors":"C. Butts","doi":"10.1080/0022250X.2018.1490737","DOIUrl":null,"url":null,"abstract":"ABSTRACT Exponential family random graph models (ERGMs) can be understood in terms of a set of structural biases that act on an underlying reference distribution. This distribution determines many aspects of the behavior and interpretation of the ERGM families incorporating it. One important innovation in this area has been the development of an ERGM reference model that produces realistic behavior when generalized to sparse networks of varying sizes. Here, we show that this model can be derived from a latent dynamic process in which tie formation takes place within small local settings between which individuals move. This derivation provides one possible micro-process interpretation of the sparse ERGM reference model and sheds light on the conditions under which constant mean degree scaling can emerge.","PeriodicalId":50139,"journal":{"name":"Journal of Mathematical Sociology","volume":"43 1","pages":"40 - 57"},"PeriodicalIF":1.3000,"publicationDate":"2018-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0022250X.2018.1490737","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sociology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/0022250X.2018.1490737","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 14
Abstract
ABSTRACT Exponential family random graph models (ERGMs) can be understood in terms of a set of structural biases that act on an underlying reference distribution. This distribution determines many aspects of the behavior and interpretation of the ERGM families incorporating it. One important innovation in this area has been the development of an ERGM reference model that produces realistic behavior when generalized to sparse networks of varying sizes. Here, we show that this model can be derived from a latent dynamic process in which tie formation takes place within small local settings between which individuals move. This derivation provides one possible micro-process interpretation of the sparse ERGM reference model and sheds light on the conditions under which constant mean degree scaling can emerge.
期刊介绍:
The goal of the Journal of Mathematical Sociology is to publish models and mathematical techniques that would likely be useful to professional sociologists. The Journal also welcomes papers of mutual interest to social scientists and other social and behavioral scientists, as well as papers by non-social scientists that may encourage fruitful connections between sociology and other disciplines. Reviews of new or developing areas of mathematics and mathematical modeling that may have significant applications in sociology will also be considered.
The Journal of Mathematical Sociology is published in association with the International Network for Social Network Analysis, the Japanese Association for Mathematical Sociology, the Mathematical Sociology Section of the American Sociological Association, and the Methodology Section of the American Sociological Association.