Preparation and characterization of AFM tips with nitrogen-vacancy and nitrogen-vacancy-nitrogen color centers

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2021-06-30 DOI:10.4302/plp.v13i2.1095
Zuzanna Orzechowska, M. Mrózek, W. Gawlik, A. Wojciechowski
{"title":"Preparation and characterization of AFM tips with nitrogen-vacancy and nitrogen-vacancy-nitrogen color centers","authors":"Zuzanna Orzechowska, M. Mrózek, W. Gawlik, A. Wojciechowski","doi":"10.4302/plp.v13i2.1095","DOIUrl":null,"url":null,"abstract":"We demonstrate a simple dip-coating method of covering standard AFM tips with nanodiamonds containing color centers. Such coating enables convenient visualization of AFM tips above transparent samples as well as using the tip for performing spatially resolved magnetometry. Full Text: PDF ReferencesG. Binnig, C. F. Quate, C. Gerber, \"Atomic Force Microscope\", Phys. Rev. Lett. 56, 930 (1986). CrossRef F .J. Giessibl, \"Advances in atomic force microscopy\", Rev. Mod. Phys. 75, 949 (2003). CrossRef S. Kasas, G. Dietler, \"Probing nanomechanical properties from biomolecules to living cells\", Eur. J. Appl. Physiol. 456, 13 (2008). CrossRef C. Roduit et al., \"Stiffness Tomography by Atomic Force Microscopy\", Biophys. J. 97, 674 (2009). CrossRef L. A. Kolodny et al., \"Spatially Correlated Fluorescence/AFM of Individual Nanosized Particles and Biomolecules\", Anal. Chem. 73, 1959 (2001). CrossRef L. Rondin et al., \"Magnetometry with nitrogen-vacancy defects in diamond\", Rep. Prog. Phys. 77, 056503 (2014). CrossRef C. L. Degen, \"Scanning magnetic field microscope with a diamond single-spin sensor\", Appl. Phys. Lett. 92, 243111 (2008). CrossRef J. M. Taylor et al., \"High-sensitivity diamond magnetometer with nanoscale resolution\", Nat. Phys. 4, 810 (2008). CrossRef J. R. Maze et al., \"Nanoscale magnetic sensing with an individual electronic spin in diamond\", Nature 455, 644 (2008). CrossRef L. Rondin et al., \"Nanoscale magnetic field mapping with a single spin scanning probe magnetometer\", Appl. Phys. Lett. 100, 153118 (2012). CrossRef J. P. Tetienne et al., \"Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope\", Science 344, 1366 (2014). CrossRef R. Nelz et al., \"Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips\", Appl. Phys. Lett. 109, 193105 (2016). CrossRef G. Balasubramanian et al., \"Nanoscale imaging magnetometry with diamond spins under ambient conditions\", Nature 455, 648 (2008). CrossRef P. Maletinsky et al., \"A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres\", Nat. nanotechnol. 7, 320 (2012). CrossRef L. Thiel et al., \"Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer\", Nat. nanotechnol. 11, 677 (2016). CrossRef F. Jelezko et al., \"Single spin states in a defect center resolved by optical spectroscopy\", Appl. Phys. Lett. 81, 2160 (2002). CrossRef M. W. Doherty et al., \"The nitrogen-vacancy colour centre in diamond\", Phys. Rep. 528, 1 (2013). CrossRef C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, \"Stable Solid-State Source of Single Photons\", Phys. Rev. Lett. 85, 290 (2000). CrossRef A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski, \"Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers\", Science 276, 2012 (1997). CrossRef F. Dolde et al., \"Electric-field sensing using single diamond spins\", Nat. Phys. 7, 459 (2011). CrossRef K. Sasaki et al., \"Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond\", Rev. Sci. Instrum. 87, 053904 (2016). CrossRef A. M. Wojciechowski et al., \"Optical Magnetometry Based on Nanodiamonds with Nitrogen-Vacancy Color Centers\", Materials 12, 2951 (2019). CrossRef I. V. Fedotov et al., \"Fiber-optic magnetometry with randomly oriented spins\", Opt. Lett. 39, 6755 (2014). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v13i2.1095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

We demonstrate a simple dip-coating method of covering standard AFM tips with nanodiamonds containing color centers. Such coating enables convenient visualization of AFM tips above transparent samples as well as using the tip for performing spatially resolved magnetometry. Full Text: PDF ReferencesG. Binnig, C. F. Quate, C. Gerber, "Atomic Force Microscope", Phys. Rev. Lett. 56, 930 (1986). CrossRef F .J. Giessibl, "Advances in atomic force microscopy", Rev. Mod. Phys. 75, 949 (2003). CrossRef S. Kasas, G. Dietler, "Probing nanomechanical properties from biomolecules to living cells", Eur. J. Appl. Physiol. 456, 13 (2008). CrossRef C. Roduit et al., "Stiffness Tomography by Atomic Force Microscopy", Biophys. J. 97, 674 (2009). CrossRef L. A. Kolodny et al., "Spatially Correlated Fluorescence/AFM of Individual Nanosized Particles and Biomolecules", Anal. Chem. 73, 1959 (2001). CrossRef L. Rondin et al., "Magnetometry with nitrogen-vacancy defects in diamond", Rep. Prog. Phys. 77, 056503 (2014). CrossRef C. L. Degen, "Scanning magnetic field microscope with a diamond single-spin sensor", Appl. Phys. Lett. 92, 243111 (2008). CrossRef J. M. Taylor et al., "High-sensitivity diamond magnetometer with nanoscale resolution", Nat. Phys. 4, 810 (2008). CrossRef J. R. Maze et al., "Nanoscale magnetic sensing with an individual electronic spin in diamond", Nature 455, 644 (2008). CrossRef L. Rondin et al., "Nanoscale magnetic field mapping with a single spin scanning probe magnetometer", Appl. Phys. Lett. 100, 153118 (2012). CrossRef J. P. Tetienne et al., "Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope", Science 344, 1366 (2014). CrossRef R. Nelz et al., "Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips", Appl. Phys. Lett. 109, 193105 (2016). CrossRef G. Balasubramanian et al., "Nanoscale imaging magnetometry with diamond spins under ambient conditions", Nature 455, 648 (2008). CrossRef P. Maletinsky et al., "A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres", Nat. nanotechnol. 7, 320 (2012). CrossRef L. Thiel et al., "Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer", Nat. nanotechnol. 11, 677 (2016). CrossRef F. Jelezko et al., "Single spin states in a defect center resolved by optical spectroscopy", Appl. Phys. Lett. 81, 2160 (2002). CrossRef M. W. Doherty et al., "The nitrogen-vacancy colour centre in diamond", Phys. Rep. 528, 1 (2013). CrossRef C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, "Stable Solid-State Source of Single Photons", Phys. Rev. Lett. 85, 290 (2000). CrossRef A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski, "Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers", Science 276, 2012 (1997). CrossRef F. Dolde et al., "Electric-field sensing using single diamond spins", Nat. Phys. 7, 459 (2011). CrossRef K. Sasaki et al., "Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond", Rev. Sci. Instrum. 87, 053904 (2016). CrossRef A. M. Wojciechowski et al., "Optical Magnetometry Based on Nanodiamonds with Nitrogen-Vacancy Color Centers", Materials 12, 2951 (2019). CrossRef I. V. Fedotov et al., "Fiber-optic magnetometry with randomly oriented spins", Opt. Lett. 39, 6755 (2014). CrossRef
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮-空位和氮-空位-氮色中心原子力显微镜针尖的制备与表征
我们演示了一种简单的浸渍涂层方法,用含有色心的纳米金刚石覆盖标准AFM尖端。这种涂层可以方便地可视化透明样品上方的AFM尖端,以及使用尖端进行空间分辨磁强计。全文:PDF宾宁,C. F. Quate, C. Gerber,“原子力显微镜”,物理学。Rev. Lett. 56,930(1986)。交叉参考F . j .。Giessibl,“原子力显微镜的进展”,《现代物理》,75,949(2003)。[CrossRef] S. Kasas, G. Dietler,“从生物分子到活细胞的纳米力学特性研究”,欧洲。j:。生理学报,456,13(2008)。CrossRef C. product et al.,“原子力显微镜的刚度层析成像”,生物物理学报。J. 97, 674(2009)。CrossRef L. A. Kolodny et al.,“单个纳米粒子和生物分子的空间相关荧光/AFM”,vol . 3, no . 3。化学,73,1959(2001)。CrossRef L. Rondin et al.,“金刚石中氮空位缺陷的磁强计”,中华人民大学学报(自然科学版)。物理学报,77,056503(2014)。CrossRef C. L. Degen,“带金刚石单自旋传感器的扫描磁场显微镜”,applied。理论物理。Lett. 92, 243111(2008)。CrossRef J. M. Taylor et al.,“高灵敏度纳米级金刚石磁力计”,物理学报,4,10(2008)。CrossRef J. R. Maze et al.,“金刚石中单个电子自旋的纳米级磁传感”,Nature, 455, 644(2008)。CrossRef L. Rondin et al.,“用单自旋扫描探针磁强计绘制纳米级磁场”,苹果。理论物理。生物医学工程学报,2012,33(4):481 - 481。CrossRef J. P. Tetienne et al.,“氮空位中心显微镜在纳米尺度上的成像及对畴壁跳变的控制”,Science, 344, 1366(2014)。CrossRef R. Nelz et al.,“单晶中色心荧光和自旋操纵,锥体钻石尖端”,苹果。理论物理。科学通报,2016,(5):391 - 391。CrossRef G. Balasubramanian et al.,“环境条件下金刚石自旋的纳米成像磁强计”,Nature 455, 648(2008)。CrossRef P. Maletinsky et al.,“用于单氮空位中心纳米级成像的鲁棒扫描金刚石传感器”,纳米技术。7, 320(2012)。CrossRef L. Thiel et al.,“使用低温量子磁力计的定量纳米尺度涡旋成像”,纳米技术。11, 677(2016)。CrossRef F. Jelezko et al.,“用光谱学分析缺陷中心的单自旋态”,applied。理论物理。Lett. 81,2160(2002)。CrossRef M. W. Doherty et al.,“钻石中的氮空位色中心”,物理学。众议员528,1(2013)。C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter,“稳定的单光子固态源”,物理学报。Rev. Lett. 85,290(2000)。* * * A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski,“扫描共聚焦光学显微镜与单缺陷中心的磁共振”,科学,2012(1997)。CrossRef F. Dolde et al.,“单钻石自旋的电场传感”,物理学报,7,459(2011)。CrossRef K. Sasaki et al.,“金刚石中氮空位中心的光学探测磁共振宽带、大面积微波天线”,中国科学院学报(自然科学版)。仪器仪表。87,053904(2016)。CrossRef A. M. Wojciechowski等,“基于氮空位色心纳米金刚石的光学磁强计”,材料12,2951(2019)。CrossRef . V. Fedotov et al.,“基于随机自旋的光纤磁强计”,光学学报,39,6755(2014)。CrossRef
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1