Investigation on slurry erosion of Al2O3 incorporated glass/epoxy composites

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL International Journal of Surface Science and Engineering Pub Date : 2020-12-23 DOI:10.1504/ijsurfse.2020.10034486
A. G. Joshi, M. P. Kumar, S. Basavarajappa
{"title":"Investigation on slurry erosion of Al2O3 incorporated glass/epoxy composites","authors":"A. G. Joshi, M. P. Kumar, S. Basavarajappa","doi":"10.1504/ijsurfse.2020.10034486","DOIUrl":null,"url":null,"abstract":"The jet erosion of fibre reinforced plastics (FRPs) has been reported in many literatures available, but very few have reported on their slurry erosion behaviour of FRPs. Furthermore, limited studies have paid attention on slurry erosion characterisation of filler incorporated FRPs. Hence, present study was focused on slurry erosion behaviour of alumina fillers incorporated glass/epoxy composites. The parameters considered were slurry concentration, contact angle and impact velocity. The experimental results reveal that increase in filler percentage increased the erosion resistance of glass/epoxy composites. The increase in slurry concentration and impact velocity has resulted in higher amount of erosion of studied composites. The material loss due to erosion increased with increase of impact angle till 45°, whereas further increase in impact angle caused reduction in wear. Erosion mechanisms were studied through SEM image of eroded samples. Worn surface analysis revealed that plastic deformation, matrix debonding with microcutting, microploughing, and pulverisation were dominant erosion mechanisms at 45° to 60° impact angle.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/ijsurfse.2020.10034486","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The jet erosion of fibre reinforced plastics (FRPs) has been reported in many literatures available, but very few have reported on their slurry erosion behaviour of FRPs. Furthermore, limited studies have paid attention on slurry erosion characterisation of filler incorporated FRPs. Hence, present study was focused on slurry erosion behaviour of alumina fillers incorporated glass/epoxy composites. The parameters considered were slurry concentration, contact angle and impact velocity. The experimental results reveal that increase in filler percentage increased the erosion resistance of glass/epoxy composites. The increase in slurry concentration and impact velocity has resulted in higher amount of erosion of studied composites. The material loss due to erosion increased with increase of impact angle till 45°, whereas further increase in impact angle caused reduction in wear. Erosion mechanisms were studied through SEM image of eroded samples. Worn surface analysis revealed that plastic deformation, matrix debonding with microcutting, microploughing, and pulverisation were dominant erosion mechanisms at 45° to 60° impact angle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Al2O3掺入玻璃/环氧复合材料的浆液侵蚀研究
已有许多文献报道了纤维增强塑料(FRPs)的射流侵蚀,但很少有文献报道其浆料侵蚀行为。此外,有限的研究关注掺入填料的FRP的浆料侵蚀特性。因此,本研究的重点是氧化铝填料掺入玻璃/环氧树脂复合材料的浆料侵蚀行为。所考虑的参数包括浆料浓度、接触角和冲击速度。实验结果表明,填料比例的增加提高了玻璃/环氧树脂复合材料的耐侵蚀性。浆料浓度和冲击速度的增加导致所研究的复合材料的侵蚀量更高。由于侵蚀导致的材料损失随着冲击角的增加而增加,直到45°,而冲击角的进一步增加导致磨损减少。通过侵蚀样品的扫描电镜图像研究了侵蚀机理。磨损表面分析表明,在45°至60°的冲击角下,塑性变形、基体微切削脱粘、微剥落和粉碎是主要的侵蚀机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
25.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.
期刊最新文献
Nanofiber composite PCL/HA coating by spray method on metallic implant materials for medical applications: A Study on the Different spraying distances and pressures A novel magnetorheological finishing process based on three revolving flat tip tools for external cylindrical surfaces Investigation of solid particle erosion behaviour of Fe-Cr alloy coating Surface integrity and chip morphology in Ti-6Al-4V machining under CO2 cooling with Vortex Tube Characterisation of surfaces coated with different nanocellulose-based suspensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1