Diversified role of fuzzified particle concentration on Casson gold-blood nanofluid flow through an elongating sheet for different shape nanoparticles

IF 2.8 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Taibah University for Science Pub Date : 2023-09-04 DOI:10.1080/16583655.2023.2254465
Himanshu Upreti, S. R. Mishra, Alok Kumar Pandey, Navneet Joshi, Bhagwati Prasad Joshi
{"title":"Diversified role of fuzzified particle concentration on Casson gold-blood nanofluid flow through an elongating sheet for different shape nanoparticles","authors":"Himanshu Upreti, S. R. Mishra, Alok Kumar Pandey, Navneet Joshi, Bhagwati Prasad Joshi","doi":"10.1080/16583655.2023.2254465","DOIUrl":null,"url":null,"abstract":"The theme of this work is to explore the impact of shape factor on magnetized Casson gold-blood nanofluid flow through elongated sheet using fuzzified volume fraction. The impact of Ohmic heating, convective heating and suction/injection on heat transfer rate, is incorporated. The existing ordinary differential equations (ODEs) are transformed into fuzzy differential equations by applying the α-cut technique of fuzzy numbers. The α-cut value ranges from 0 to 1, which determines the level of fuzziness in the TFNs. The results indicate that rise in the Casson parameter leads to a reduction in the boundary layer thickness and an augmentation of shear stress near the sheet. Additionally, among the nanoparticle shapes studied, cylindrical nanoparticles demonstrate the extreme thermal conductivity, followed by platelet and blade-shaped nanoparticles, all contributing to an improvement in the heat transfer rate. The present code is validated numerically with previous works and found in good agreement.","PeriodicalId":17100,"journal":{"name":"Journal of Taibah University for Science","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Taibah University for Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1080/16583655.2023.2254465","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

The theme of this work is to explore the impact of shape factor on magnetized Casson gold-blood nanofluid flow through elongated sheet using fuzzified volume fraction. The impact of Ohmic heating, convective heating and suction/injection on heat transfer rate, is incorporated. The existing ordinary differential equations (ODEs) are transformed into fuzzy differential equations by applying the α-cut technique of fuzzy numbers. The α-cut value ranges from 0 to 1, which determines the level of fuzziness in the TFNs. The results indicate that rise in the Casson parameter leads to a reduction in the boundary layer thickness and an augmentation of shear stress near the sheet. Additionally, among the nanoparticle shapes studied, cylindrical nanoparticles demonstrate the extreme thermal conductivity, followed by platelet and blade-shaped nanoparticles, all contributing to an improvement in the heat transfer rate. The present code is validated numerically with previous works and found in good agreement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊化颗粒浓度对卡森金血纳米流体在不同形状纳米颗粒拉长片上流动的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Taibah University for Science
Journal of Taibah University for Science MULTIDISCIPLINARY SCIENCES-
CiteScore
6.60
自引率
6.10%
发文量
102
审稿时长
19 weeks
期刊介绍: Journal of Taibah University for Science (JTUSCI) is an international scientific journal for the basic sciences. This journal is produced and published by Taibah University, Madinah, Kingdom of Saudi Arabia. The scope of the journal is to publish peer reviewed research papers, short communications, reviews and comments as well as the scientific conference proceedings in a special issue. The emphasis is on biology, geology, chemistry, environmental control, mathematics and statistics, nanotechnology, physics, and related fields of study. The JTUSCI now quarterly publishes four issues (Jan, Apr, Jul and Oct) per year. Submission to the Journal is based on the understanding that the article has not been previously published in any other form and is not considered for publication elsewhere.
期刊最新文献
Numerical investigation of Aloe Vera-mediated green synthesized CuAlO 2 as HTL in Pb-free perovskite solar cells Effect of fractional graphite alloying on the properties of aloe-vera mediated green-synthesized NiOx-C composite Analysis of MHD tangent hyperbolic hybrid nanofluid flow with different base fluids over a porous stretched sheet Brownian motion and thermophoresis influence in magnetized Maxwell upper-convected stagnation point fluid flow via a stretching porous surface A molecular informatics and in-vitro approach to evaluate the HMG-CoA reductase inhibitory efficacy of monoterpenes, carvacrol and geraniol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1