Afsheen Afsar, Muhammad Naveed Javed, I. Hashmi, Shoaib Muhammad, A. Bari, F. Ali
{"title":"Thiourea-based low molecular-mass organogelators from (+)-dehydroabietylamine","authors":"Afsheen Afsar, Muhammad Naveed Javed, I. Hashmi, Shoaib Muhammad, A. Bari, F. Ali","doi":"10.1080/17415993.2023.2226785","DOIUrl":null,"url":null,"abstract":"Three new thiourea-based thermo-reversible, low molecular weight organogelators (LMOGs) 3-5 have been synthesized using (+)-Dehydroabietylamine (DAA, a tricyclic diterpene) employing DLS (Diterpene-Linker-spacer) strategy. (+) DAA was converted into isothiocynates through a cascade of reactions and cross-coupled with primary amines to furnish thiourea 3-5 with respective spacers. The structures of gelators 3-5 were confirmed through 1H-NMR and 13C-NMR spectroscopy, high-resolution electron spray ionization mass spectrometry (HRESI–MS, positive mode) and FTIR spectroscopy. Gelation potential of gelators 3-5 was investigated through inverted test tube method and sol–gel transition measured by ball-dropping method. The results revealed that unbranched alkyl groups furnish gelation and their gelation ability increases with increasing spacer length. Gelator 5 with dodecyl chain found to be excellent gelator that can gelate hexane (spontaneously), toluene, methanol, ethanol, petrol, and diesel. Morphology of gels was studied though scanning electron microscopy exhibiting fibrillar to lamellar structure with a thickness in the range of 9.5 nm to 5.0 μm with increasing length of spacer. GRAPHICAL ABSTRACT","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17415993.2023.2226785","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Three new thiourea-based thermo-reversible, low molecular weight organogelators (LMOGs) 3-5 have been synthesized using (+)-Dehydroabietylamine (DAA, a tricyclic diterpene) employing DLS (Diterpene-Linker-spacer) strategy. (+) DAA was converted into isothiocynates through a cascade of reactions and cross-coupled with primary amines to furnish thiourea 3-5 with respective spacers. The structures of gelators 3-5 were confirmed through 1H-NMR and 13C-NMR spectroscopy, high-resolution electron spray ionization mass spectrometry (HRESI–MS, positive mode) and FTIR spectroscopy. Gelation potential of gelators 3-5 was investigated through inverted test tube method and sol–gel transition measured by ball-dropping method. The results revealed that unbranched alkyl groups furnish gelation and their gelation ability increases with increasing spacer length. Gelator 5 with dodecyl chain found to be excellent gelator that can gelate hexane (spontaneously), toluene, methanol, ethanol, petrol, and diesel. Morphology of gels was studied though scanning electron microscopy exhibiting fibrillar to lamellar structure with a thickness in the range of 9.5 nm to 5.0 μm with increasing length of spacer. GRAPHICAL ABSTRACT
期刊介绍:
The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science.
Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.