{"title":"Detection and quantification of unintended large on-target gene modifications due to CRISPR/Cas9 editing","authors":"So Hyun Park, Mingming Cao, Gang Bao","doi":"10.1016/j.cobme.2023.100478","DOIUrl":null,"url":null,"abstract":"<div><p>CRISPR/Cas9 based gene editing typically functions by creating a DNA double-strand break (DSB) at the intended target locus in a cell. Recent reports showed the occurrence of unintended on-target large gene modifications by CRISPR/Cas9-induced DSB, including large deletions, insertions, and chromosomal rearrangements, in addition to small insertions and deletions. These on-target large gene modifications can have high frequencies, undetectable by standard short-range PCR based assays, leading to data misinterpretation, reduced efficacy, and potential safety concerns in therapeutic gene editing. Here, we summarize the recent advances in analyzing large on-target gene editing outcomes and their implications to clinical application, and discuss opportunities for future improvements.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"28 ","pages":"Article 100478"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246845112300034X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
CRISPR/Cas9 based gene editing typically functions by creating a DNA double-strand break (DSB) at the intended target locus in a cell. Recent reports showed the occurrence of unintended on-target large gene modifications by CRISPR/Cas9-induced DSB, including large deletions, insertions, and chromosomal rearrangements, in addition to small insertions and deletions. These on-target large gene modifications can have high frequencies, undetectable by standard short-range PCR based assays, leading to data misinterpretation, reduced efficacy, and potential safety concerns in therapeutic gene editing. Here, we summarize the recent advances in analyzing large on-target gene editing outcomes and their implications to clinical application, and discuss opportunities for future improvements.