Diagnosa Penyakit Demam Berdarah Dengue (DBD) menggunakan Metode Learning Vector Quantization (LVQ)

Firman Tawakal, Ahmedika Azkiya
{"title":"Diagnosa Penyakit Demam Berdarah Dengue (DBD) menggunakan Metode Learning Vector Quantization (LVQ)","authors":"Firman Tawakal, Ahmedika Azkiya","doi":"10.14421/JISKA.2020.43-07","DOIUrl":null,"url":null,"abstract":"Dengue Hemorrhagic Fever is a disease that is carried and transmitted through the mosquito Aedes aegypti and Aedes albopictus which is commonly found in tropical and subtropical regions such as in Indonesia to Northern Australia. in 2013 there are 2.35 million reported cases, which is 37,687 case is heavy cases of DHF. DHF’s symthoms have a similarity with typhoid fever, it often occur wrong handling. Therefore we need a system that is able to diagnose the disease suffered by patients, so that they can recognize whether the patient has DHF or Typhoid. The system will be built using Neural Network Learning Vector Quantization (LVQ) based on the best training results. This research is to diagnose Dengue Hemorrhagic Fever using LVQ with input parameters are hemoglobin, leukocytes, platelets, and heritrocytes. Based on result, the best accuracy is 97,14% with Mean Square Error (MSE) is 0.028571 with 84 train data and 36 test data. Conclution from the research is LVQ method can diagnose DHF Keywords: Dengue Hemorrhagic Fever; Learning Vector Quantization; classification; Neural Network;","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/JISKA.2020.43-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Dengue Hemorrhagic Fever is a disease that is carried and transmitted through the mosquito Aedes aegypti and Aedes albopictus which is commonly found in tropical and subtropical regions such as in Indonesia to Northern Australia. in 2013 there are 2.35 million reported cases, which is 37,687 case is heavy cases of DHF. DHF’s symthoms have a similarity with typhoid fever, it often occur wrong handling. Therefore we need a system that is able to diagnose the disease suffered by patients, so that they can recognize whether the patient has DHF or Typhoid. The system will be built using Neural Network Learning Vector Quantization (LVQ) based on the best training results. This research is to diagnose Dengue Hemorrhagic Fever using LVQ with input parameters are hemoglobin, leukocytes, platelets, and heritrocytes. Based on result, the best accuracy is 97,14% with Mean Square Error (MSE) is 0.028571 with 84 train data and 36 test data. Conclution from the research is LVQ method can diagnose DHF Keywords: Dengue Hemorrhagic Fever; Learning Vector Quantization; classification; Neural Network;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
登革出血热是一种通过埃及伊蚊和白纹伊蚊携带和传播的疾病,这两种蚊子常见于热带和亚热带地区,如印度尼西亚和北澳大利亚。2013年有235万例报告病例,即37687例为登革出血热重症病例。登革出血热的症状与伤寒有相似之处,常发生处理不当的情况。因此,我们需要一种能够诊断患者所患疾病的系统,以便他们能够识别患者是否患有登革出血热或伤寒。该系统将基于最佳训练结果,使用神经网络学习向量量化(LVQ)来构建。本研究是利用输入参数为血红蛋白、白细胞、血小板和遗传细胞的LVQ诊断登革出血热。结果表明,该方法在84组训练数据和36组测试数据的基础上,准确率达到97.14%,均方误差(MSE)为0.028571。结论:LVQ法可诊断登革出血热;学习向量量化;分类;神经网络;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1