Pedro A. Mendes Rossa, Pavel Kuriscák, J. N. Silva, José Veiga, J. Loureiro, João Oliveira, Daniel Hachmeister, H. Fernandes
{"title":"Online and FREE access to plasma physics experiments","authors":"Pedro A. Mendes Rossa, Pavel Kuriscák, J. N. Silva, José Veiga, J. Loureiro, João Oliveira, Daniel Hachmeister, H. Fernandes","doi":"10.2478/nuka-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract Remote controlled laboratories had a great push during the COVID-19 pandemic. In fact, they were already out there but lacking in visibility. This external trigger pushed the academy to face a global challenge to start offering remote experiments more consistently and maturely. Instituto Superior Técnico (IST) has been offering several remote experiments since 2000 but with the need for an update due to technological aging. As such, the framework for remote experiments in education (FREE) was created based on new web technologies. In addition to the most diverse experiments that had already been developed, FREE includes two experiments that aimed at advanced-level physics students: the Langmuir probe and the electromagnetic (EM) cavity. Both allow users to configure the various parameters and to access the results in real time or check back later. All this access is done using a browser (on a PC or mobile phone) without the need to install additional software. The results of an experimental execution are stored in a database and are downloadable, allowing users to do various analyses and to determine the corresponding plasma density and temperature. In this paper, we will introduce how FREE was used in the implementation of both experiments and give an insight into their didactic approach, such as: (i) how to perform an experimental execution, (ii) the typical data set obtained with, and (iii) the corresponding analysis necessary for the user to retrieve information from it.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"68 1","pages":"37 - 46"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2023-0006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Remote controlled laboratories had a great push during the COVID-19 pandemic. In fact, they were already out there but lacking in visibility. This external trigger pushed the academy to face a global challenge to start offering remote experiments more consistently and maturely. Instituto Superior Técnico (IST) has been offering several remote experiments since 2000 but with the need for an update due to technological aging. As such, the framework for remote experiments in education (FREE) was created based on new web technologies. In addition to the most diverse experiments that had already been developed, FREE includes two experiments that aimed at advanced-level physics students: the Langmuir probe and the electromagnetic (EM) cavity. Both allow users to configure the various parameters and to access the results in real time or check back later. All this access is done using a browser (on a PC or mobile phone) without the need to install additional software. The results of an experimental execution are stored in a database and are downloadable, allowing users to do various analyses and to determine the corresponding plasma density and temperature. In this paper, we will introduce how FREE was used in the implementation of both experiments and give an insight into their didactic approach, such as: (i) how to perform an experimental execution, (ii) the typical data set obtained with, and (iii) the corresponding analysis necessary for the user to retrieve information from it.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.