Tania Neva , Carmen Ortiz Mellet , José M. García Fernández , Juan M. Benito
{"title":"Multiply–linked cyclodextrin–aromatic hybrids: Caps, hinges and clips","authors":"Tania Neva , Carmen Ortiz Mellet , José M. García Fernández , Juan M. Benito","doi":"10.1080/07328303.2019.1609020","DOIUrl":null,"url":null,"abstract":"<div><p>The judicious combination of shaping and recognition elements in cage-type architectures represents a powerful strategy to access molecular devices with tailored receptor properties and controlled abilities to form supramolecular assemblies. Aromatic modules are particularly attractive for these endeavors: they can play the role of rigid walls to build permanent cavities, folding screens between preexisting compartments and/or act as functional components promoting noncovalent self-interactions as well as associations with third species, allowing several levels of organization to be implemented. The field of cyclodextrins has enormously benefitted from the amalgamation with aromatic building blocks to give birth to hybrids with a much broader spectrum of properties and applications. The progress in precision chemistry has further enabled the efficient preparation of multiply-linked cap, hinge or clip cyclodextrin-aromatic chimeras with unprecedented level of control, which has translated into new developments in fields like supramolecular catalysis, self-assembly or gene delivery. This review article focuses specifically in these type of compounds, highlighting the intimate relationship between structure, supramolecular properties and performance in the target application.</p></div>","PeriodicalId":15311,"journal":{"name":"Journal of Carbohydrate Chemistry","volume":"38 7","pages":"Pages 470-493"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07328303.2019.1609020","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carbohydrate Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0732830322001057","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 11
Abstract
The judicious combination of shaping and recognition elements in cage-type architectures represents a powerful strategy to access molecular devices with tailored receptor properties and controlled abilities to form supramolecular assemblies. Aromatic modules are particularly attractive for these endeavors: they can play the role of rigid walls to build permanent cavities, folding screens between preexisting compartments and/or act as functional components promoting noncovalent self-interactions as well as associations with third species, allowing several levels of organization to be implemented. The field of cyclodextrins has enormously benefitted from the amalgamation with aromatic building blocks to give birth to hybrids with a much broader spectrum of properties and applications. The progress in precision chemistry has further enabled the efficient preparation of multiply-linked cap, hinge or clip cyclodextrin-aromatic chimeras with unprecedented level of control, which has translated into new developments in fields like supramolecular catalysis, self-assembly or gene delivery. This review article focuses specifically in these type of compounds, highlighting the intimate relationship between structure, supramolecular properties and performance in the target application.
期刊介绍:
The Journal of Carbohydrate Chemistry serves as an international forum for research advances involving the chemistry and biology of carbohydrates. The following aspects are considered to fall within the scope of this journal:
-novel synthetic methods involving carbohydrates, oligosaccharides, and glycoconjugates-
the use of chemical methods to address aspects of glycobiology-
spectroscopic and crystallographic structure studies of carbohydrates-
computational and molecular modeling studies-
physicochemical studies involving carbohydrates and the chemistry and biochemistry of carbohydrate polymers.