{"title":"A baseline estimation procedure to improve MDA evaluation in gamma-ray spectrometry","authors":"Elio Tomarchio, Mariarosa Giardina, Pietro Buffa","doi":"10.1140/epjp/s13360-023-04308-3","DOIUrl":null,"url":null,"abstract":"<div><p>The evaluation of minimum detectable activity (MDA) for a radionuclide in a gamma-ray spectrum is generally carried out through the computation of a suitable background count. This task is sometimes difficult for complex spectra for the presence of many photopeaks which make the trend of continuum extremely variable due to multiple dispersion effects and interference factors. It follows that the MDA assessment must be take into account the contributions of all gamma emissions of radionuclides contained in a sample and its value can be significantly higher than that determined by considering only the background of the spectrometric system due to the overlapping of other peaks. A procedure or an algorithm to determine, each time, the count values to be used for the calculation of MDA is interesting and useful. In this work, some of the more recent algorithms proposed for background subtraction in a gamma-ray spectrum have been examined, applying them in an inverse way for the evaluation of baseline trend in the whole energy range. Among the algorithms examined, particular attention was paid to the application of SNIP (statistical sensitive nonlinear iterative peak clipping) algorithms, which are the simplest to adopt and implement in an application procedure. The results obtained in the analysis of test gamma-ray spectra are satisfactory and allow to quickly determine the MDA values with a formulation based on the ISO-11929 standard.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"138 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-023-04308-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-023-04308-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The evaluation of minimum detectable activity (MDA) for a radionuclide in a gamma-ray spectrum is generally carried out through the computation of a suitable background count. This task is sometimes difficult for complex spectra for the presence of many photopeaks which make the trend of continuum extremely variable due to multiple dispersion effects and interference factors. It follows that the MDA assessment must be take into account the contributions of all gamma emissions of radionuclides contained in a sample and its value can be significantly higher than that determined by considering only the background of the spectrometric system due to the overlapping of other peaks. A procedure or an algorithm to determine, each time, the count values to be used for the calculation of MDA is interesting and useful. In this work, some of the more recent algorithms proposed for background subtraction in a gamma-ray spectrum have been examined, applying them in an inverse way for the evaluation of baseline trend in the whole energy range. Among the algorithms examined, particular attention was paid to the application of SNIP (statistical sensitive nonlinear iterative peak clipping) algorithms, which are the simplest to adopt and implement in an application procedure. The results obtained in the analysis of test gamma-ray spectra are satisfactory and allow to quickly determine the MDA values with a formulation based on the ISO-11929 standard.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.