Laser directed energy deposition of AISI 316L stainless steel: The effect of build direction on mechanical properties in as-built and heat-treated conditions
Jeferson T. Pacheco , Vitor H. Meura , Paulo Rafael A. Bloemer , Marcelo T. Veiga , Osmar C. de Moura Filho , Alexandre Cunha , Moisés F. Teixeira
{"title":"Laser directed energy deposition of AISI 316L stainless steel: The effect of build direction on mechanical properties in as-built and heat-treated conditions","authors":"Jeferson T. Pacheco , Vitor H. Meura , Paulo Rafael A. Bloemer , Marcelo T. Veiga , Osmar C. de Moura Filho , Alexandre Cunha , Moisés F. Teixeira","doi":"10.1016/j.aime.2022.100079","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study was to evaluate the effect of build direction on the mechanical properties of AISI 316L stainless steel using the Laser Directed Energy Deposition (L-DED) process, in the as-built and heat-treated conditions. The test specimens were manufactured in vertical and horizontal directions for tensile and impact tests. In addition, analysis test specimens cube-shaped were manufactured for microstructural and microhardness evaluation. The microstructure in the as-built condition showed a combination of cellular, equiaxial dendritic, cellular dendritic and columnar dendritic, while the microstructure in the heat-treated condition showed a homogeneous characteristic, composed by differently sized grains. The microhardness evaluation in the heat-treated condition presented a reduction of 26.52% compared to the as-build condition. The ultimate tensile strength of horizontal test specimens in the as-built condition was 4.86% higher than the heat-treated condition, whereas the ultimate tensile strength of vertical test specimens in the as-built condition was 5.55% higher than the heat-treated condition. The impact resistance of horizontal test specimens in the heat-treated condition was 12.36% higher than the as-built condition, whereas the impact resistance of vertical test specimens in the heat-treated condition was 18.92% higher than the as-built condition. Briefly, the build direction directly affects the mechanical properties of components manufactured through the L-DED process, and it is possible to improve certain mechanical properties, such as ductility and toughness, through heat treatment.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"4 ","pages":"Article 100079"},"PeriodicalIF":3.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912922000095/pdfft?md5=1963359d34a3d5a600309c022e897ccb&pid=1-s2.0-S2666912922000095-main.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912922000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 11
Abstract
The purpose of this study was to evaluate the effect of build direction on the mechanical properties of AISI 316L stainless steel using the Laser Directed Energy Deposition (L-DED) process, in the as-built and heat-treated conditions. The test specimens were manufactured in vertical and horizontal directions for tensile and impact tests. In addition, analysis test specimens cube-shaped were manufactured for microstructural and microhardness evaluation. The microstructure in the as-built condition showed a combination of cellular, equiaxial dendritic, cellular dendritic and columnar dendritic, while the microstructure in the heat-treated condition showed a homogeneous characteristic, composed by differently sized grains. The microhardness evaluation in the heat-treated condition presented a reduction of 26.52% compared to the as-build condition. The ultimate tensile strength of horizontal test specimens in the as-built condition was 4.86% higher than the heat-treated condition, whereas the ultimate tensile strength of vertical test specimens in the as-built condition was 5.55% higher than the heat-treated condition. The impact resistance of horizontal test specimens in the heat-treated condition was 12.36% higher than the as-built condition, whereas the impact resistance of vertical test specimens in the heat-treated condition was 18.92% higher than the as-built condition. Briefly, the build direction directly affects the mechanical properties of components manufactured through the L-DED process, and it is possible to improve certain mechanical properties, such as ductility and toughness, through heat treatment.