Shadi Sanoubar, Bram de Jonge, L. Maillart, O. Prokopyev
{"title":"Optimal Condition-Based Maintenance via a Mobile Maintenance Resource","authors":"Shadi Sanoubar, Bram de Jonge, L. Maillart, O. Prokopyev","doi":"10.1287/trsc.2021.0302","DOIUrl":null,"url":null,"abstract":"We consider the problem of performing condition-based maintenance on a set of geographically distributed assets via a single maintenance resource that travels between the assets’ locations. That is, we dynamically determine the optimal positioning of the maintenance resource and the optimal timing of condition-based maintenance interventions that the maintenance resource performs. These decisions are made as a function of the conditions of the assets and the current location of the maintenance resource to minimize total expected costs, which include downtime, travel, and maintenance expenses. This holistic approach enables us to study unique trade-offs, namely, maintaining an asset early if the maintenance resource is currently close by, or alternatively, optimally repositioning the maintenance resource or having it idle in key locations in anticipation of asset deterioration. We model the location of the maintenance resource and assets using a graph representation and the assets’ deterioration process as a discrete-time Markov chain. We formulate a Markov decision process to obtain the optimal policy for the maintenance resource (i.e., where to travel, idle, or repair). We explore the properties of the optimal policies (analytically and numerically) and how they are affected by the graph structure. Finally, we develop and analyze some implementation-friendly heuristic policies. Funding: This research was supported by Pitt Momentum Fund Award (3463) and NSF [Grant CMMI-2002681]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0302 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2021.0302","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of performing condition-based maintenance on a set of geographically distributed assets via a single maintenance resource that travels between the assets’ locations. That is, we dynamically determine the optimal positioning of the maintenance resource and the optimal timing of condition-based maintenance interventions that the maintenance resource performs. These decisions are made as a function of the conditions of the assets and the current location of the maintenance resource to minimize total expected costs, which include downtime, travel, and maintenance expenses. This holistic approach enables us to study unique trade-offs, namely, maintaining an asset early if the maintenance resource is currently close by, or alternatively, optimally repositioning the maintenance resource or having it idle in key locations in anticipation of asset deterioration. We model the location of the maintenance resource and assets using a graph representation and the assets’ deterioration process as a discrete-time Markov chain. We formulate a Markov decision process to obtain the optimal policy for the maintenance resource (i.e., where to travel, idle, or repair). We explore the properties of the optimal policies (analytically and numerically) and how they are affected by the graph structure. Finally, we develop and analyze some implementation-friendly heuristic policies. Funding: This research was supported by Pitt Momentum Fund Award (3463) and NSF [Grant CMMI-2002681]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0302 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.