A Methodology for the Efficient Quantification of Parameter and Model Uncertainty

IF 0.5 Q4 ENGINEERING, MECHANICAL Journal of Verification, Validation and Uncertainty Quantification Pub Date : 2022-05-18 DOI:10.1115/1.4054575
R. Feldmann, C. M. Gehb, M. Schäffner, T. Melz
{"title":"A Methodology for the Efficient Quantification of Parameter and Model Uncertainty","authors":"R. Feldmann, C. M. Gehb, M. Schäffner, T. Melz","doi":"10.1115/1.4054575","DOIUrl":null,"url":null,"abstract":"\n Complex structural systems often entail computationally intensive models that require efficient methods for statistical model calibration due to the high number of required model evaluations. In this paper, we present a BAYESIAN inference-based methodology for efficient statistical model calibration that builds upon the combination of the speed in computation of a low-fidelity model with the accuracy of the computationally intensive high-fidelity model. The proposed two-stage method incorporates the adaptive METROPOLIS algorithm and a GAUSSIAN process (GP)-based adaptive surrogate model as low-fidelity model. In order to account for model uncertainty, we incorporate a GP-based discrepancy function into the model calibration. By calibrating the hyperparameters of the discrepancy function alongside the model parameters, we prevent the results of the model calibration to be biased. The methodology is illustrated by the statistical model calibration of a damping parameter in the modular active spring-damper system, a structural system developed within the collaborative research center SFB 805 at the Technical University of Darmstadt. The reduction of parameter and model uncertainty achieved by application of our methodology is quantified and illustrated by assessing the predictive capability of the mathematical model of the modular active spring-damper system.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4054575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Complex structural systems often entail computationally intensive models that require efficient methods for statistical model calibration due to the high number of required model evaluations. In this paper, we present a BAYESIAN inference-based methodology for efficient statistical model calibration that builds upon the combination of the speed in computation of a low-fidelity model with the accuracy of the computationally intensive high-fidelity model. The proposed two-stage method incorporates the adaptive METROPOLIS algorithm and a GAUSSIAN process (GP)-based adaptive surrogate model as low-fidelity model. In order to account for model uncertainty, we incorporate a GP-based discrepancy function into the model calibration. By calibrating the hyperparameters of the discrepancy function alongside the model parameters, we prevent the results of the model calibration to be biased. The methodology is illustrated by the statistical model calibration of a damping parameter in the modular active spring-damper system, a structural system developed within the collaborative research center SFB 805 at the Technical University of Darmstadt. The reduction of parameter and model uncertainty achieved by application of our methodology is quantified and illustrated by assessing the predictive capability of the mathematical model of the modular active spring-damper system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效量化参数和模型不确定性的方法
复杂的结构系统通常需要计算密集型模型,由于需要大量的模型评估,这些模型需要高效的统计模型校准方法。在本文中,我们提出了一种基于贝叶斯推理的有效统计模型校准方法,该方法建立在低保真度模型的计算速度与计算密集型高保真度模型的精度的结合之上。所提出的两阶段方法结合了自适应METROPOLIS算法和基于高斯过程(GP)的自适应代理模型作为低保真度模型。为了考虑模型的不确定性,我们在模型校准中加入了基于GP的差异函数。通过与模型参数一起校准差异函数的超参数,我们防止了模型校准的结果有偏差。该方法通过模块化主动弹簧阻尼器系统中阻尼参数的统计模型校准来说明,该系统是达姆施塔特工业大学SFB 805合作研究中心开发的一个结构系统。通过评估模块化主动弹簧-阻尼器系统数学模型的预测能力,量化并说明了应用我们的方法所实现的参数和模型不确定性的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
Automatic Ground-Truth Image Labeling for Deep Neural Network Training and Evaluation Using Industrial Robotics and Motion Capture Using Responsive Feedback in Scaling a Gender Norms-Shifting Adolescent Sexual and Reproductive Health Intervention in the Democratic Republic of Congo. A Solution Verification Study For Urans Simulations of Flow Over a 5:1 Rectangular Cylinder Using Grid Convergence Index And Least Squares Procedures Strategies for Computational Fluid Dynamics Validation Experiments On the Verification of Finite Element Determinations of Stress Concentration Factors for Handbooks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1