THE COOLING INTENSITY DEPENDENT ON LANDSCAPE COMPLEXITY OF GREEN INFRASTRUCTURE IN THE METROPOLITAN AREA

IF 1 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Journal of Environmental Engineering and Landscape Management Pub Date : 2021-10-19 DOI:10.3846/jeelm.2021.15573
Yuncai Wang, Junda Huang, Chundi Chen, Jia-ke Shen, Shuo Sheng
{"title":"THE COOLING INTENSITY DEPENDENT ON LANDSCAPE COMPLEXITY OF GREEN INFRASTRUCTURE IN THE METROPOLITAN AREA","authors":"Yuncai Wang, Junda Huang, Chundi Chen, Jia-ke Shen, Shuo Sheng","doi":"10.3846/jeelm.2021.15573","DOIUrl":null,"url":null,"abstract":"The cooling effect of green infrastructure (GI) is becoming a hot topic on mitigating the urban heat island (UHI) effect. Alterations to the green space are a viable solution for reducing land surface temperature (LST), yet few studies provide specific guidance for landscape planning adapted to the different regions. This paper proposed and defined the landscape complexity and the threshold value of cooling effect (TVoE). Results find that: (1) GI provides a better cooling effect in the densely built-up area than the green belt; (2) GI with a simple form, aggregated configuration, and low patch density had a better cooling intensity; (3) In the densely built-up area, TVoE of the forest area is 4.5 ha, while in the green belt, TVoE of the forest and grassland area is 9 ha and 2.25 ha. These conclusions will help the planners to reduce LST effectively, and employ environmentally sustainable planning.","PeriodicalId":15653,"journal":{"name":"Journal of Environmental Engineering and Landscape Management","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Engineering and Landscape Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3846/jeelm.2021.15573","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 5

Abstract

The cooling effect of green infrastructure (GI) is becoming a hot topic on mitigating the urban heat island (UHI) effect. Alterations to the green space are a viable solution for reducing land surface temperature (LST), yet few studies provide specific guidance for landscape planning adapted to the different regions. This paper proposed and defined the landscape complexity and the threshold value of cooling effect (TVoE). Results find that: (1) GI provides a better cooling effect in the densely built-up area than the green belt; (2) GI with a simple form, aggregated configuration, and low patch density had a better cooling intensity; (3) In the densely built-up area, TVoE of the forest area is 4.5 ha, while in the green belt, TVoE of the forest and grassland area is 9 ha and 2.25 ha. These conclusions will help the planners to reduce LST effectively, and employ environmentally sustainable planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
都市圈绿化基础设施景观复杂性对降温强度的影响
绿色基础设施(GI)的降温效应正成为缓解城市热岛效应的热门话题。绿地改造是降低地表温度的可行解决方案,但很少有研究为适应不同地区的景观规划提供具体指导。本文提出并定义了景观复杂性和降温效应阈值。结果表明:(1)GI在建筑密集区的降温效果优于绿化带;(2) GI具有简单的形式、聚集的配置和低贴片密度,具有更好的冷却强度;(3) 在建筑密集区,森林区的TVoE为4.5公顷,而在绿化带,森林和草原区的TVo E分别为9公顷和2.25公顷。这些结论将有助于规划者有效地减少LST,并采用环境可持续规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: The Journal of Environmental Engineering and Landscape Management publishes original research about the environment with emphasis on sustainability.
期刊最新文献
DUST DIFFUSION IN LARGE-SCALE URBAN CONSTRUCTION COMBINING WRF AND CALPUFF MODEL—TAKE XIAMEN AS AN EXAMPLE MAPPING OVER 80 YEARS OF WETLAND SENSITIVITY TO HUMAN INTERVENTION. THE SPATIAL DYNAMICS OF THE LAKES AND WETLANDS OF THE JIJIA-IAȘI WETLANDS RAMSAR SITE IN 1935–2018 CO-RECYCLING OF SEWAGE SLUDGE AND GARDEN WASTE BIOCHAR: AS A GROWING MEDIUM FOR LANDSCAPE PLANT FUTURE HOMES WITH THE APPLICATION OF ANCIENT BUILDING EXPERIENCE, NEW STRUCTURAL TECHNIQUES, AND NATURAL ENERGY CONSUMPTION POLLUTION REMOVAL CAPACITIES OF AQUATIC PLANT SPECIES IN THE DATONG WETLAND PARK IN NORTH CHINA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1