3D bioprinted glioma models

IF 5 Q1 ENGINEERING, BIOMEDICAL Progress in biomedical engineering (Bristol, England) Pub Date : 2022-06-13 DOI:10.1088/2516-1091/ac7833
Defne Yigci, M. R. Sarabi, M. Ustun, Nazente Atçeken, Emel Sokullu, T. Bagci-Onder, S. Tasoglu
{"title":"3D bioprinted glioma models","authors":"Defne Yigci, M. R. Sarabi, M. Ustun, Nazente Atçeken, Emel Sokullu, T. Bagci-Onder, S. Tasoglu","doi":"10.1088/2516-1091/ac7833","DOIUrl":null,"url":null,"abstract":"Glioma is one of the most malignant types of cancer and most gliomas remain incurable. One of the hallmarks of glioma is its invasiveness. Furthermore, glioma cells tend to readily detach from the primary tumor and travel through the brain tissue, making complete tumor resection impossible in many cases. To expand the knowledge regarding the invasive behavior of glioma, evaluate drug resistance, and recapitulate the tumor microenvironment, various modeling strategies were proposed in the last decade, including three-dimensional (3D) biomimetic scaffold-free cultures, organ-on-chip microfluidics chips, and 3D bioprinting platforms, which allow for the investigation on patient-specific treatments. The emerging method of 3D bioprinting technology has introduced a time- and cost-efficient approach to create in vitro models that possess the structural and functional characteristics of human organs and tissues by spatially positioning cells and bioink. Here, we review emerging 3D bioprinted models developed for recapitulating the brain environment and glioma tumors, with the purpose of probing glioma cell invasion and gliomagenesis and discuss the potential use of 4D printing and machine learning applications in glioma modelling.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ac7833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 13

Abstract

Glioma is one of the most malignant types of cancer and most gliomas remain incurable. One of the hallmarks of glioma is its invasiveness. Furthermore, glioma cells tend to readily detach from the primary tumor and travel through the brain tissue, making complete tumor resection impossible in many cases. To expand the knowledge regarding the invasive behavior of glioma, evaluate drug resistance, and recapitulate the tumor microenvironment, various modeling strategies were proposed in the last decade, including three-dimensional (3D) biomimetic scaffold-free cultures, organ-on-chip microfluidics chips, and 3D bioprinting platforms, which allow for the investigation on patient-specific treatments. The emerging method of 3D bioprinting technology has introduced a time- and cost-efficient approach to create in vitro models that possess the structural and functional characteristics of human organs and tissues by spatially positioning cells and bioink. Here, we review emerging 3D bioprinted models developed for recapitulating the brain environment and glioma tumors, with the purpose of probing glioma cell invasion and gliomagenesis and discuss the potential use of 4D printing and machine learning applications in glioma modelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物3D打印胶质瘤模型
胶质瘤是最恶性的癌症之一,大多数胶质瘤仍然无法治愈。胶质瘤的特征之一是其侵袭性。此外,胶质瘤细胞往往很容易从原发肿瘤上脱离并穿过脑组织,这使得在许多情况下不可能完全切除肿瘤。为了扩大对胶质瘤侵袭行为的认识,评估耐药性,并概括肿瘤微环境,在过去十年中提出了各种建模策略,包括三维(3D)仿生无支架培养,器官芯片微流体芯片和3D生物打印平台,这些策略允许对患者特异性治疗进行调查。新兴的3D生物打印技术方法引入了一种时间和成本效益的方法,通过空间定位细胞和生物链接来创建具有人体器官和组织结构和功能特征的体外模型。在这里,我们回顾了新兴的3D生物打印模型,用于再现脑环境和胶质瘤肿瘤,目的是探测胶质瘤细胞的侵袭和胶质瘤形成,并讨论了4D打印和机器学习在胶质瘤建模中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
期刊最新文献
Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. Biomedical applications of the engineered AIEgen-lipid nanostructurein vitroandin vivo. Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1