Rapid star identification algorithm for fish-eye camera based on PPP/INS assistance

IF 1.9 4区 工程技术 Q2 ENGINEERING, MARINE Journal of Navigation Pub Date : 2022-06-13 DOI:10.1017/S0373463322000285
Chonghui Li, Yuanxi Yang, Guorui Xiao, Zhanglei Chen, Shuai Tong, Zihao Liu
{"title":"Rapid star identification algorithm for fish-eye camera based on PPP/INS assistance","authors":"Chonghui Li, Yuanxi Yang, Guorui Xiao, Zhanglei Chen, Shuai Tong, Zihao Liu","doi":"10.1017/S0373463322000285","DOIUrl":null,"url":null,"abstract":"Abstract The fish-eye star sensor with a field of view (FOV) of 180° is an important piece of equipment for attitude determination, which improves the visibility of stars significantly. However, it also brings the star identification (star-ID) difficulties because of imprecise calibrations. Thus, a fish-eye star-ID algorithm supported by the integration of the precise point positioning/inertial navigation system (PPP/INS) is proposed. At first, a reference star map is generated in combination with the distortion model of the fish-eye camera based on the position and attitude information from the PPP/INS. Then the star points are extracted in a specific neighbourhood of the reference star points. Subsequently, the extracted star points are individually tested and identified according to angular distance error. Finally, the real-time precise attitude is determined based on the star-ID results. Experimental results show that, 270–310 stars can be identified in a fish-eye star map with an average time of 0.03 s if the initial attitude error is smaller than 1.5° and an attitude determination accuracy better than 10″ can be achieved by support from PPP/INS.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"928 - 945"},"PeriodicalIF":1.9000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000285","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The fish-eye star sensor with a field of view (FOV) of 180° is an important piece of equipment for attitude determination, which improves the visibility of stars significantly. However, it also brings the star identification (star-ID) difficulties because of imprecise calibrations. Thus, a fish-eye star-ID algorithm supported by the integration of the precise point positioning/inertial navigation system (PPP/INS) is proposed. At first, a reference star map is generated in combination with the distortion model of the fish-eye camera based on the position and attitude information from the PPP/INS. Then the star points are extracted in a specific neighbourhood of the reference star points. Subsequently, the extracted star points are individually tested and identified according to angular distance error. Finally, the real-time precise attitude is determined based on the star-ID results. Experimental results show that, 270–310 stars can be identified in a fish-eye star map with an average time of 0.03 s if the initial attitude error is smaller than 1.5° and an attitude determination accuracy better than 10″ can be achieved by support from PPP/INS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PPP/INS辅助的鱼眼相机快速星识别算法
摘要180°视场鱼眼星敏感器是一种重要的姿态确定设备,能显著提高恒星的可见性。然而,由于标定精度不高,也给星识别带来了困难。为此,提出了一种结合精确点定位/惯性导航系统(PPP/INS)的鱼眼星识别算法。首先,根据PPP/INS的位置和姿态信息,结合鱼眼相机的畸变模型生成参考星图;然后在参考星点的特定邻域中提取星点。然后,根据角距误差对提取的星点进行单独测试和识别。最后,根据星id结果确定实时精确姿态。实验结果表明,当初始姿态误差小于1.5°时,在鱼眼星图中识别270 ~ 310颗恒星的平均时间为0.03 s,在PPP/INS的支持下,姿态确定精度优于10″。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Navigation
Journal of Navigation 工程技术-工程:海洋
CiteScore
6.10
自引率
4.20%
发文量
59
审稿时长
4.6 months
期刊介绍: The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.
期刊最新文献
The supine moving apprehension test-Reliability and validity among healthy individuals and patients with anterior shoulder instability. GPS + Galileo + BDS-3 medium to long-range single-baseline RTK: an alternative for network-based RTK? Compass adjustment by GPS (or any other GNSS receiver) and a single visual reference Navigation pattern extraction from AIS trajectory big data via topic model The Impact of Vaccination Among Hospitalized Patients with the Diagnosis of COVID-19.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1