{"title":"Influence of Saturated Organic Matter on the Accuracy of In-Situ Measurements Recorded with a Nuclear Moisture and Density Gauge","authors":"Eric R. Labelle, D. Jaeger","doi":"10.5552/CROJFE.2021.762","DOIUrl":null,"url":null,"abstract":"The impact of machines on forest soils is regularly assessed and quantified using absolute bulk density, which is most frequently obtained by soil cores. However, to allow for repeated measurements at the exact same locations, non-destructive devices are increasingly being used to determine soil bulk density and moisture content in field studies. An example of such a device is a nuclear moisture and density gauge (NMDG), originally designed as a control measurement for soil bulk density and moisture content in geotechnical applications. Unlike road construction or foundation projects that use mineral soil or gravel, forest soils have complex structures and the presence of organic matter, which can skew moisture and density readings from a NMDG. To gain further knowledge in this respect, we performed controlled tests in a sandbox to quantify the influence of varying amounts of saturated organic matter (3, 5, 10, and 15%) mixed with mineral soil in different layers (0–5, 0–10, 0–20 and 0–40 cm) on the accuracy of soil moisture content obtained by a NMDG and soil theta probe at varying depths. Main results illustrated that the presence of saturated organic matter per se was not problematic but moisture content overestimations and related underestimation of dry bulk density occurred when the tested measurement depth was below the created organic layer. Since forest soils often exhibit higher organic matter contents in the upper horizon, correction factors are suggested to minimize the moisture content variations between NMDG and reference method. With the use of correction factors, NMDG can present a non-destructive, fast, and accurate method of measuring soil moisture and bulk density in forestry applications.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Journal of Forest Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5552/CROJFE.2021.762","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 3
Abstract
The impact of machines on forest soils is regularly assessed and quantified using absolute bulk density, which is most frequently obtained by soil cores. However, to allow for repeated measurements at the exact same locations, non-destructive devices are increasingly being used to determine soil bulk density and moisture content in field studies. An example of such a device is a nuclear moisture and density gauge (NMDG), originally designed as a control measurement for soil bulk density and moisture content in geotechnical applications. Unlike road construction or foundation projects that use mineral soil or gravel, forest soils have complex structures and the presence of organic matter, which can skew moisture and density readings from a NMDG. To gain further knowledge in this respect, we performed controlled tests in a sandbox to quantify the influence of varying amounts of saturated organic matter (3, 5, 10, and 15%) mixed with mineral soil in different layers (0–5, 0–10, 0–20 and 0–40 cm) on the accuracy of soil moisture content obtained by a NMDG and soil theta probe at varying depths. Main results illustrated that the presence of saturated organic matter per se was not problematic but moisture content overestimations and related underestimation of dry bulk density occurred when the tested measurement depth was below the created organic layer. Since forest soils often exhibit higher organic matter contents in the upper horizon, correction factors are suggested to minimize the moisture content variations between NMDG and reference method. With the use of correction factors, NMDG can present a non-destructive, fast, and accurate method of measuring soil moisture and bulk density in forestry applications.
期刊介绍:
Croatian Journal of Forest Engineering (CROJFE) is a refereed journal distributed internationally, publishing original research articles concerning forest engineering, both theoretical and empirical. The journal covers all aspects of forest engineering research, ranging from basic to applied subjects. In addition to research articles, preliminary research notes and subject reviews are published.
Journal Subjects and Fields:
-Harvesting systems and technologies-
Forest biomass and carbon sequestration-
Forest road network planning, management and construction-
System organization and forest operations-
IT technologies and remote sensing-
Engineering in urban forestry-
Vehicle/machine design and evaluation-
Modelling and sustainable management-
Eco-efficient technologies in forestry-
Ergonomics and work safety