Text Line Extraction in Historical Documents Using Mask R-CNN

Signals Pub Date : 2022-08-04 DOI:10.3390/signals3030032
Ahmad Droby, Berat Kurar Barakat, Reem Alaasam, Boraq Madi, Irina Rabaev, Jihad El-Sana
{"title":"Text Line Extraction in Historical Documents Using Mask R-CNN","authors":"Ahmad Droby, Berat Kurar Barakat, Reem Alaasam, Boraq Madi, Irina Rabaev, Jihad El-Sana","doi":"10.3390/signals3030032","DOIUrl":null,"url":null,"abstract":"Text line extraction is an essential preprocessing step in many handwritten document image analysis tasks. It includes detecting text lines in a document image and segmenting the regions of each detected line. Deep learning-based methods are frequently used for text line detection. However, only a limited number of methods tackle the problems of detection and segmentation together. This paper proposes a holistic method that applies Mask R-CNN for text line extraction. A Mask R-CNN model is trained to extract text lines fractions from document patches, which are further merged to form the text lines of an entire page. The presented method was evaluated on the two well-known datasets of historical documents, DIVA-HisDB and ICDAR 2015-HTR, and achieved state-of-the-art results. In addition, we introduce a new challenging dataset of Arabic historical manuscripts, VML-AHTE, where numerous diacritics are present. We show that the presented Mask R-CNN-based method can successfully segment text lines, even in such a challenging scenario.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals3030032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Text line extraction is an essential preprocessing step in many handwritten document image analysis tasks. It includes detecting text lines in a document image and segmenting the regions of each detected line. Deep learning-based methods are frequently used for text line detection. However, only a limited number of methods tackle the problems of detection and segmentation together. This paper proposes a holistic method that applies Mask R-CNN for text line extraction. A Mask R-CNN model is trained to extract text lines fractions from document patches, which are further merged to form the text lines of an entire page. The presented method was evaluated on the two well-known datasets of historical documents, DIVA-HisDB and ICDAR 2015-HTR, and achieved state-of-the-art results. In addition, we introduce a new challenging dataset of Arabic historical manuscripts, VML-AHTE, where numerous diacritics are present. We show that the presented Mask R-CNN-based method can successfully segment text lines, even in such a challenging scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于掩码R-CNN的历史文献文本行提取
在许多手写文档图像分析任务中,文本行提取是必不可少的预处理步骤。它包括检测文档图像中的文本行,并分割每个检测到的行的区域。基于深度学习的方法经常用于文本行检测。然而,只有有限数量的方法同时解决检测和分割的问题。本文提出了一种将Mask R-CNN应用于文本行提取的整体方法。Mask R-CNN模型被训练来从文档补丁中提取文本行部分,这些文本行部分被进一步合并以形成整个页面的文本行。所提出的方法在两个著名的历史文献数据集DIVA HisDB和ICDAR 2015-HTR上进行了评估,并取得了最先进的结果。此外,我们还介绍了一个新的具有挑战性的阿拉伯历史手稿数据集VML-AHTE,其中存在许多变音符号。我们表明,即使在这样一个具有挑战性的场景中,所提出的基于Mask R-CNN的方法也可以成功地分割文本行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1